
12. Multiple test corrections

"Natural selection is a mechanism for generating an 
exceedingly high degree of improbability”

Ronald A. Fisher
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Gene expression experiment
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gene_id p.value
1  GENE00001 0.040503700 1 in 20 chance of a false positive

Differential expression: compare gene expression in two conditions (e.g. by t-test)

2  GENE00002 0.086340732
3  GENE00003 0.552768467
4  GENE00004 0.379025917
5  GENE00005 0.990102618
6  GENE00006 0.182729903
7  GENE00007 0.923285031
8  GENE00008 0.938615285
9  GENE00009 0.431912336
10 GENE00010 0.822697032
11 GENE00011 0.004911421
12 GENE00012 0.873463918
13 GENE00013 0.481156679
14 GENE00014 0.442047456
15 GENE00015 0.794117108
16 GENE00016 0.214535451
17 GENE00017 0.231943488
18 GENE00018 0.980911106
19 GENE00019 0.422162464
20 GENE00020 0.915841637
...

10,000 genes

~500 genes are “significant” by chance
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Even unlikely result will eventually happen 
if you repeat your test many times



Let’s perform a test 𝑚 times
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No 
effect Effect Total

Significant 𝐹𝑃 𝑇𝑃 𝐷

Not 
significant 𝑇𝑁 𝐹𝑁 𝑚 − 𝐷

Total 𝑚! 𝑚" 𝑚

False positives True positives

True negatives False negatives

Number of tests

Number of 
discoveries

Reality
Te

st
 re

su
lt
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Family-wise error rate

𝐹𝑊𝐸𝑅 = Pr(𝐹𝑃 ≥ 1)



Probability of winning at least once
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Events Probability

👍 𝛼
👎 1 − 𝛼

Events Probability

👍👍 𝛼×𝛼
👍👎 𝛼×(1 − 𝛼)
👎👍 (1 − 𝛼)×𝛼
👎👎 1 − 𝛼 ! Probability of not winning at all

Probability of winning at least once
1 − 1 − 𝛼 !

Play lottery
Probability of winning is 𝛼



False positive probability
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H0: no effect
Set 𝛼 = 0.05

One test

Probability of having a false positive
𝑃" = 𝛼

Two independent tests

Probability of having at least one false positive in either test
𝑃! = 1 − 1 − 𝛼 !

𝒎 independent tests

Probability of having  at least one false positive in any test
𝑃# = 1 − 1 − 𝛼 #



Family-wise error rate (FWER)
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Probability of having at least one false positive 
among 𝑚 tests; 𝛼 = 0.05

𝑃# = 1 − 1 − 𝛼 #

Jelly beans test, 𝑚 = 20, 𝛼 = 0.05

𝑃!$ = 1 − 1 − 0.05 !$ = 0.64

𝛼



Bonferroni limit – to control FWER
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Controlling FWER

We want to make sure that

𝐹𝑊𝐸𝑅 ≤ 𝛼.

Then, the FWER is controlled at 
level 𝛼.

Bonferroni limit

Apply smaller limit per test, 𝛼%.

𝛼% =
𝛼
𝑚

𝑃#% = 1 − 1 −
𝛼
𝑚

#
≈ 𝛼

Probability of having at least one false positive 
among 𝑚 tests; 𝛼 = 0.05

𝑃# = 1 − 1 − 𝛼 #



Test data (1000 independent experiments)
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No effect

𝜇! = 20 g
𝑚! = 970

Effect

𝜇" = 40 g
𝑚" = 30

Random samples, size 𝑛 = 5, from two normal distributions • We have 1000 data sets

• Each set contains 5 values

• We perform one-sample t-
test for each sample

• Null hypothesis: 𝜇 = 20 g



1000 t-tests, H0: 𝜇 = 20 g
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No effect (970)

Effect (30)

No correction

No effect Effect Total

Significant 56 30 86

Not 
significant 914 0 914

Total 970 30 1000

Test
significant

(86)



One sample t-test, H0: 𝜇 = 20 g
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No correction

No effect Effect Total

Significant 𝐹𝑃 = 56 𝑇𝑃 = 30 86

Not significant 𝑇𝑁 = 914 𝐹𝑁 = 0 914

Total 970 30 1000

𝐹𝑃𝑅 =
56

56 + 914
= 0.058

𝐹𝑁𝑅 =
0

0 + 30
= 0

False positive rate 𝐹𝑃𝑅 =
𝐹𝑃
𝑚!

=
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

False negative rate 𝐹𝑁𝑅 =
𝐹𝑁
𝑚"

=
𝐹𝑁

𝐹𝑁 + 𝑇𝑃



Bonferroni limit
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No correction Bonferroni

𝛼 0.05 5×10&'

𝐹𝑃𝑅 0.058 0
𝐹𝑁𝑅 0 0.87

No correction

No effect Effect Total

Significant 56 30 86

Not 
significant 914 0 914

Total 970 30 1000

Bonferroni

No effect Effect Total

Significant 0 4 4

Not 
significant 970 26 996

Total 970 30 1000



Holm-Bonferroni method
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Sort p-values

𝑝("), 𝑝(!), … , 𝑝(#)

Reject (1) if 𝑝(") ≤
*
#

Reject (2) if 𝑝(!) ≤
*

#&"

Reject (3) if 𝑝(+) ≤
*

#&!

...

Stop when 𝑝(,) >
*

#&,-"

𝑘 𝑝 𝛼
𝛼
𝑚

𝛼
𝑚 − 𝑘 + 1

1 0.003 0.05 0.01 0.01

2 0.005 0.05 0.01 0.0125

3 0.012 0.05 0.01 0.017

4 0.04 0.05 0.01 0.025

5 0.058 0.05 0.01 0.05

Holm-Bonferroni method 
controls FWER



Holm-Bonferroni method
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No correction Bonferroni HB

𝛼 0.05 5×10&' 5×10&'

𝐹𝑃𝑅 0.058 0 0
𝐹𝑁𝑅 0 0.87 0.87

Holm-Bonferroni

No effect Effect Total

Significant 0 4 4

Not 
significant 970 26 996

Total 970 30 1000

30 smallest p-values (out of 1000)



False discovery rate

𝐹𝐷𝑅 =
𝐹𝑃
𝐷



False discovery rate

18

False positive rate

𝐹𝑃𝑅 =
𝐹𝑃
𝑚$

=
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

The fraction of events with no effect we 
falsely marked as significant

𝐹𝑃𝑅 =
56
970 = 0.058

False discovery rate

𝐹𝑃𝑅 =
𝐹𝑃
𝐷 =

𝐹𝑃
𝐹𝑃 + 𝑇𝑃

The fraction of discoveries that are false

𝐹𝐷𝑅 =
56
86 = 0.65

No correction

No effect Effect Total

Significant 𝐹𝑃 = 56 𝑇𝑃 = 30 86

Not significant 𝑇𝑁 = 914 𝐹𝑁 = 0 914

Total 970 30 1000



Benjamini-Hochberg method

19

Sort p-values

𝑝("), 𝑝(!), … , 𝑝(#)

Find the largest 𝑘, such that

𝑝(,) ≤
𝑘
𝑚𝛼

Reject all null hypotheses for 
𝑖 = 1, … , 𝑘

𝑘 𝑝 𝛼
𝛼
𝑚

𝛼
𝑚 − 𝑘 + 1

𝑘
𝑚
𝛼

1 0.003 0.05 0.01 0.01 0.01

2 0.005 0.05 0.01 0.0125 0.02

3 0.012 0.05 0.01 0.017 0.03

4 0.038 0.05 0.01 0.025 0.04

5 0.058 0.05 0.01 0.05 0.05

Benjamini-Hochberg 
method controls FDR



Benjamini-Hochberg method
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No correction Bonferroni HB BH

𝛼 0.05 5×10&' 3.7×10&' 0.0011
𝐹𝑃𝑅 0.058 0 0 0.0021
𝐹𝑁𝑅 0 0.87 0.87 0.30
𝐹𝐷𝑅 0.65 0 0 0.087

Benjamini-Hochberg

No effect Effect Total

Significant 2 21 23

Not 
significant 968 9 977

Total 970 30 1000



Controlling FWER and FDR
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Benjamini-Hochberg
controls FDR

(false discovery rate)

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃

Controlling FDR - guaranteed

𝐹𝐷𝑅 ≤ 𝛼

Holm-Bonferroni
controls FWER

(family-wise error rate)

𝐹𝑊𝐸𝑅 = Pr(𝐹𝑃 ≥ 1)

Controlling FWER - guaranteed

𝐹𝑊𝐸𝑅 ≤ 𝛼



Benjamini-Hochberg procedure controls FDR
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Controlling FDR

𝐹𝐷𝑅 ≤ 𝛼

𝐹𝐷𝑅 can be approximated by the 
mean over many experiments

Bootstrap: generate test data 10,000 
times, perform 1000 t-tests for each 
set and find FDR for BH procedure

𝐹𝐷𝑅 = 0.049



Adjusted p-values
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p-values can be “adjusted”, 
so they compare directly 
with 𝛼, and not ,

#
𝛼

Problem: adjusted p-value 
does not express any 
probability

Useful but mind the 
interpretationraw p-values

adjusted p-values

𝑘
𝑚𝛼

𝛼



How to do this in R
# Read generated data

> d <- read.table("http://tiny.cc/two_hypotheses", header=TRUE)
> p <- d$p

# Holm-Bonferroni procedure
> p.adj <- p.adjust(p, "holm")
> p[p.adj < 0.05]
[1] 1.476263e-05 2.662440e-05 3.029839e-05

# Benjamini-Hochberg procedure
> p.adj <- p.adjust(p, "BH")
> p[p.adj < 0.05]
[1] 1.038835e-03 6.670798e-04 1.050547e-03 1.476263e-05 5.271367e-04
[6] 3.503370e-04 9.664789e-04 1.068863e-03 7.995860e-04 5.404476e-04
[11] 9.681321e-04 1.580069e-04 1.732747e-04 3.159954e-04 2.662440e-05
[16] 4.709732e-04 1.517964e-04 2.873971e-04 3.258726e-04 4.087615e-04
[21] 3.029839e-05 9.320438e-04 1.713309e-04 2.863402e-04 4.082322e-04

24



Estimating false discovery rate



Control and estimate
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Controlling FDR

1. Fix acceptable FDR limit, 𝛼, 
beforehand

2. Find a thresholding rule, so that

𝐹𝐷𝑅 ≤ 𝛼

Estimating FDR

For each p-value, 𝑝., form a point 
estimate of FDR,

𝐹𝐷𝑅(𝑝.)



P-value distribution

27

Data set 1
100% no effect

Data set 2
80% no effect,
20% real effect



P-value distribution
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Good Bad!



Definition of 𝜋"
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80% no effect, 20% effect Proportion of no effects

𝜋$ =
# no effect
# all tests

No effect

Effect

𝜋!

Total shaded area is 1 (because 
of normalization)

Area of the red rectangle is ~𝜋$

Note

# set denotes number 
of elements in the set



Storey method: point estimate of FDR
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80% no effect, 20% real effect
Point estimate, 𝑭𝑫𝑹(𝒑)

First, estimate 𝜋$

Arbitrary limit 𝑝, every 𝑝. < 𝑝 is 
significant. No. of significant tests is

𝐷(𝑝) = # 𝑝. < 𝑝

No. of false positives is

𝐹𝑃(𝑝) = 𝑝𝜋$𝑚

Hence,

𝐹𝐷𝑅 𝑝 =
𝐹𝑃(𝑝)
𝐷(𝑝) =

𝑝𝜋$𝑚
# 𝑝. < 𝑝

𝜋!

𝑝

True positives

False positives

Storey, J.D., 2002, JR Statist Soc B, 64, 479 

𝜋$

𝑝



Storey method
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Point estimate of FDR
This is the so-called q-value:

𝑞 𝑝. = 𝐹𝐷𝑅 𝑝.



Interpretation of q-value
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No. ID p-value q-value

... ... ... ...

100 9249 0.000328 0.0266

101 8157 0.000328 0.0266

102 8228 0.000335 0.0269

103 8291 0.000338 0.0269

104 8254 0.000347 0.0272

105 8875 0.000348 0.0272

106 8055 0.000353 0.0273

107 8235 0.000375 0.0284

108 8148 0.000376 0.0284

109 8236 0.000381 0.0284

110 8040 0.000382 0.0284

... ... ... ...

There are 106 tests with 𝑞 ≤ 0.0273

Expect 2.7% of false positives among 
these tests.

Expect ~3 false positives if you set a limit 
of 𝑞 ≤ 0.0273 or 𝑝 ≤ 0.00353

q-value tells you how many false 
positives you should expect after 

choosing a significance limit



Q-values vs Benjamini-Hochberg
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q-value

BH adjusted
p-value W𝜋$

When W𝜋$ = 1, both methods 
give the same result.

For the same FDR, Storey’s 
method provides more 
significant p-values.

Hence, it is more powerful, 
especially for small W𝜋$. 

But this depends on how good 
the estimate of W𝜋$ is.

W𝜋$ - estimate of the proportion of null (no effect) tests



How to do this in R
> library(qvalue)

# Read data set 1

> pvalues <- read.table("http://tiny.cc/multi_FDR", header=TRUE)
> p <- pvalues$p

# Benjamini-Hochberg limit
> p.adj <- p.adjust(p, method="BH")
> length(p.adj <= 0.05) 
[1] 216

# q-values

> qobj <- qvalue(p)
> q <- qobj$qv
> summary(qobj)

pi0: 0.8189884

Cumulative number of significant calls:
<1e-04 <0.001 <0.01 <0.025 <0.05 <0.1    <1

p-value 40    202   611    955  1373 2138 10000
q-value 0      1     1     96   276  483 10000
local FDR      0      1     3     50   141  278  5915

> plot(qobj)
> hist(qobj)

34
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Which multiple-test correction should I use?
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False positive

“Discover” effect where there is no effect

Can be tested in follow-up experiments

Not hugely important in small samples

Impossible to manage in large samples

False negative

Missed discovery

Once you’ve missed it, it’s gone

False positives False negatives

No correction Bonferroni
Benjamini-Hochberg

Storey



Multiple test procedures: summary

Method Controls Advantages Disadvantages Recommendation

No 
correction

FPR False negatives not 
inflated

Can result in 
𝐹𝑃 ≫ 𝑇𝑃

Small samples, when 
the cost of FN is high

Bonferroni FWER None Lots of false 
negatives

Do not use

Holm-
Bonferroni

FWER Slightly better than 
Bonferroni

Lots of false 
negatives

Appropriate only 
when you want to 
guard against any 
false positives

Benjamini-
Hochberg

FDR Good trade-off 
between false 
positives and 
negatives

On average, 𝛼 of 
your positives will 
be false

Better in large 
samples

Storey -- More powerful than 
BH, in particular for 
small W𝜋$

Depends on a 
good estimate of 
W𝜋$

The best method, 
gives more insight 
into FDR

Acronyms:
FP – false positives; TP – true positives; FN – false negatives; FPR – false positive rate; FWER – family-wise error rate; 
FDR – false discovery rate; (𝜋! - estimate of the fraction of non-significant tests



Hand-outs available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


