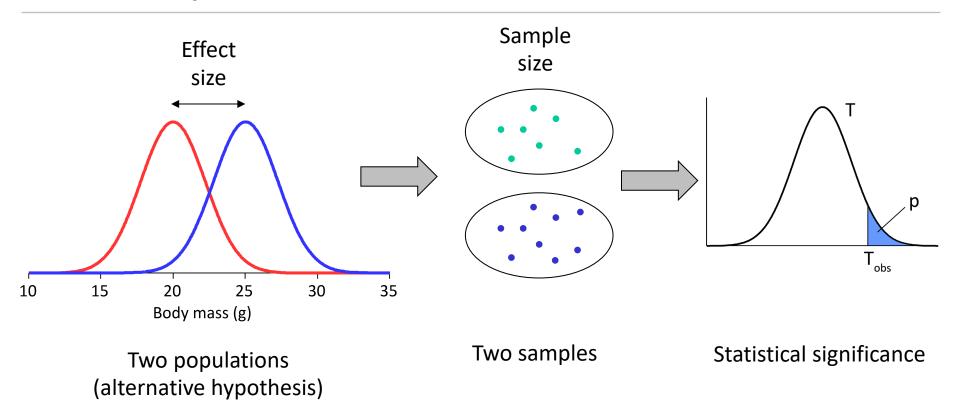
11. Statistical power

"If your experiment needs statistics, you ought to have done a better experiment"

Ernest Rutherford

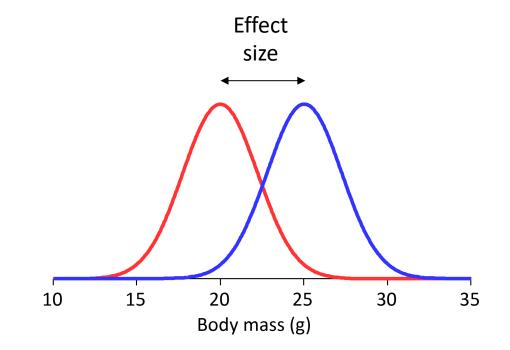
Statistical power: what is it about?



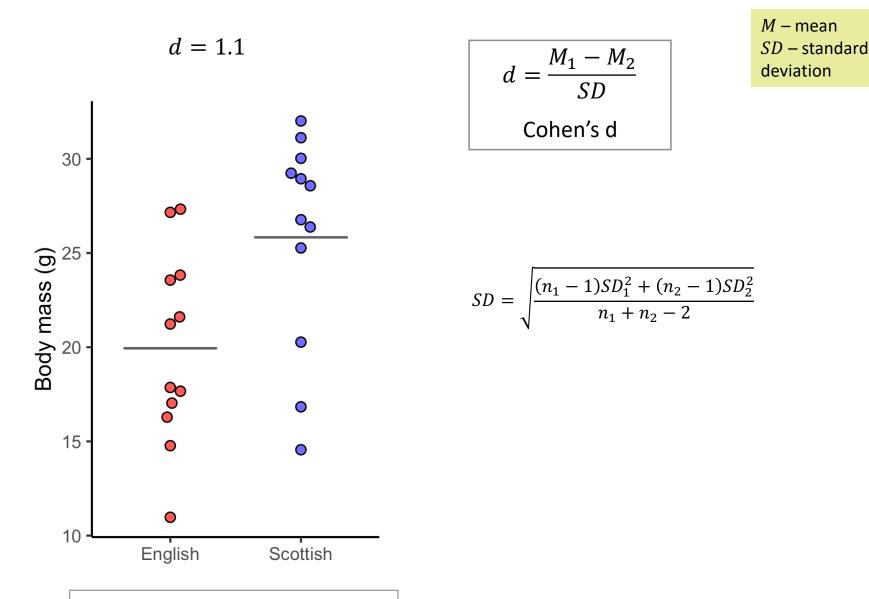
How does our ability to call a change "significant" depend on the effect size and the sample size?

Effect size

Effect size describes the alternative hypothesis



Effect size for two sample means



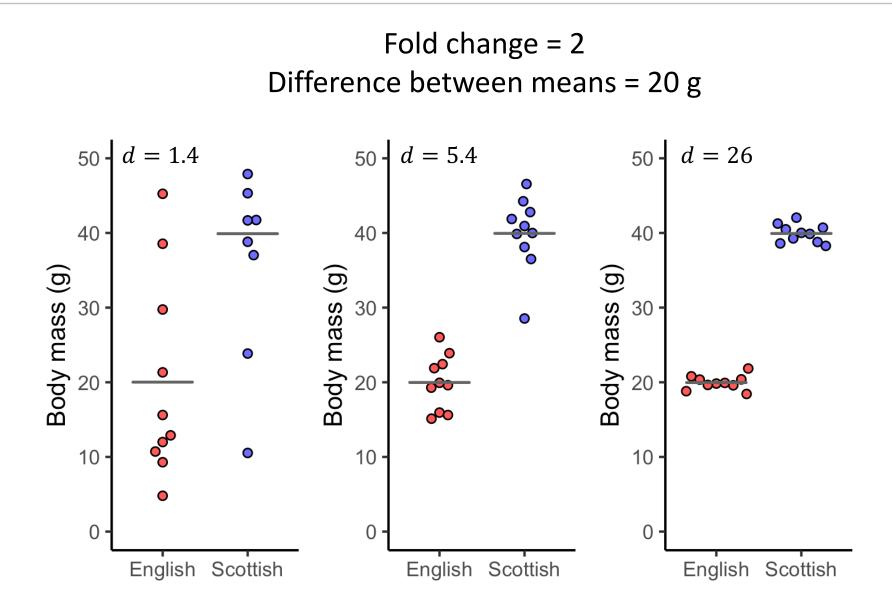
Horizontal bars represent sample means

Effect size for two sample means

d = 0.01	d = 0.2	d = 0.5	d = 0.8	d = 1.2	d = 2
Very small	Small	Medium	Large	Very large	Huge
			• • • • • • • • • • • • • • • • •		

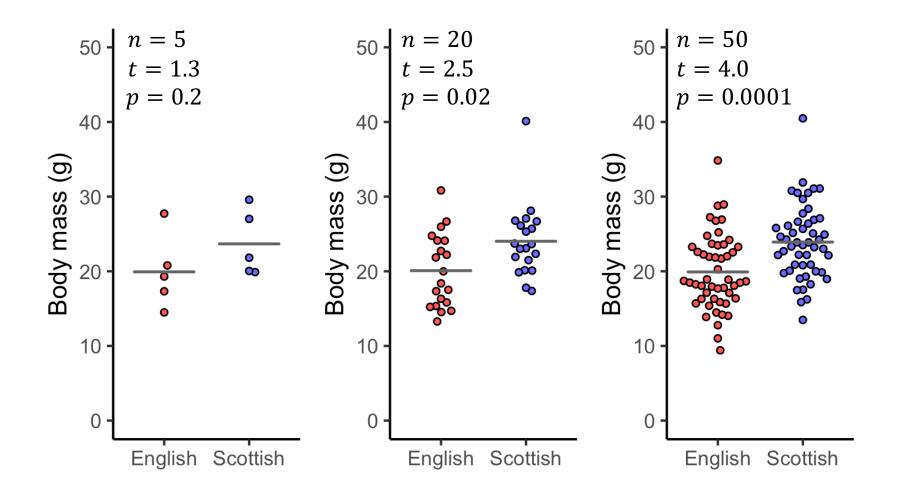
Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*

Effect size depends on the standard deviation



Effect size does not depend on the sample size

Effect size = 0.8



Comparing two samples

Statistic	Formula	Description	
Difference	$\Delta M = M_1 - M_2$	Absolute difference between sample means	
Ratio	$r = \frac{M_1}{M_2}$	Often used as logarithm	
Cohen's d	$d = \frac{M_1 - M_2}{SD}$	Effect size; takes spread in data into account	
t-statistic	$t = \frac{M_1 - M_2}{SE}$	Directly relates to statistical significance; takes spread of data and sample size into account	

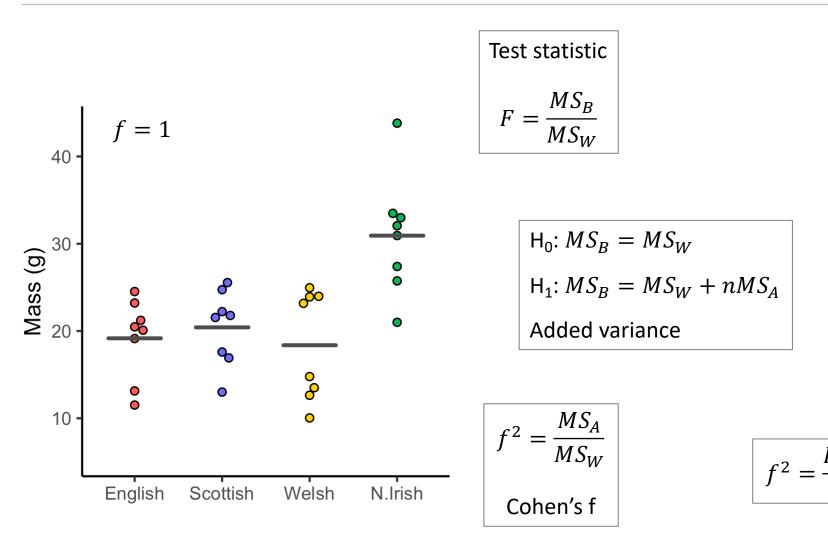
M – mean SD – standard deviation

SE – standard error

Effect size describes the alternative hypothesis

Effect size is not related to statistical significance

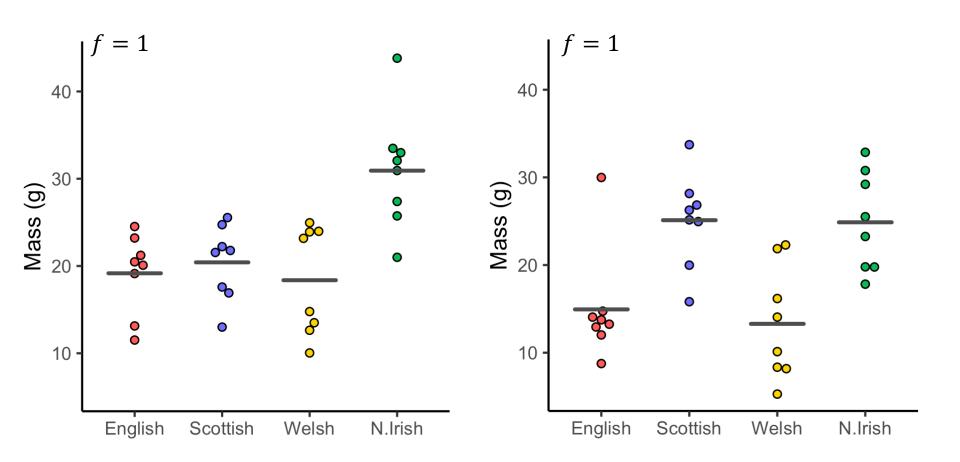
Effect size in ANOVA



For the purpose of this calculation we only consider groups of equal sizes, n

n

Effect size in ANOVA

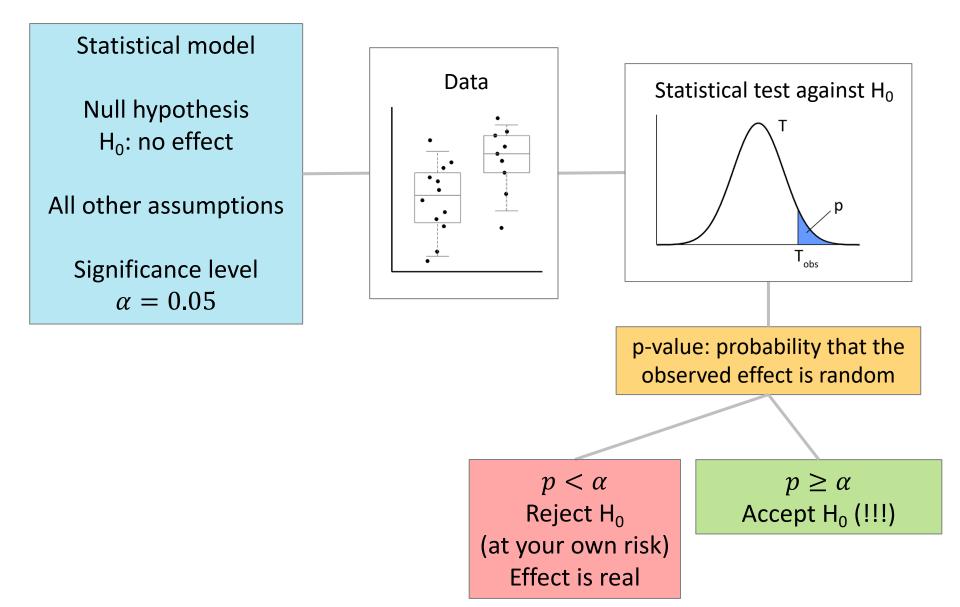


Effect size

Data	Statistical test	Effect size	Formula
Two sets, size n_1 and n_2	t-test	Cohen's <i>d</i>	$d = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$
k groups of n points each	ANOVA	Cohen's <i>f</i>	$f = \sqrt{\frac{F-1}{n}}$
contingency table	chi-square	Cohen's w	$w = \sqrt{\frac{\chi^2}{N}}$
Paired data x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n	Significance of correlation	Pearson's r	$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right)$

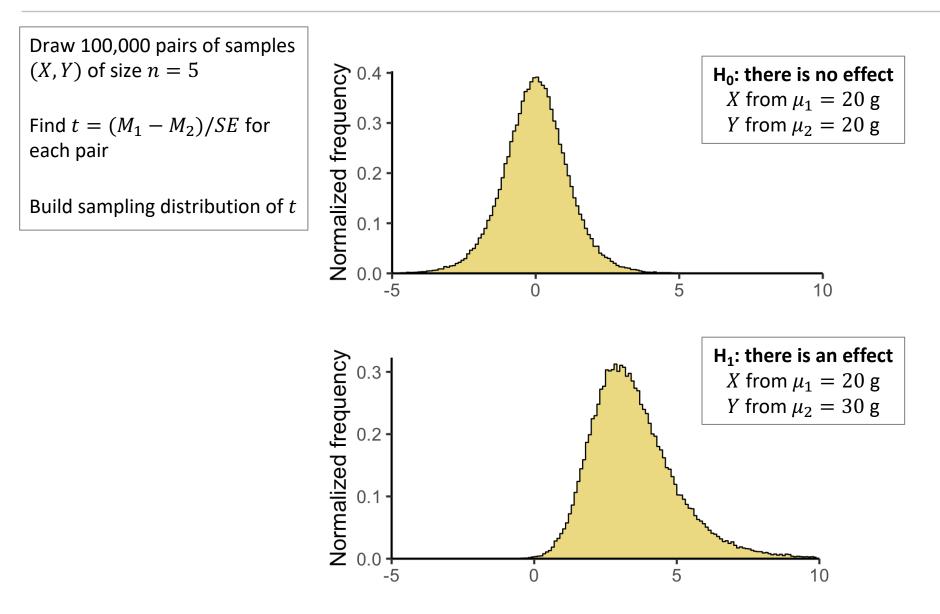
Statistical power t-test

Statistical testing

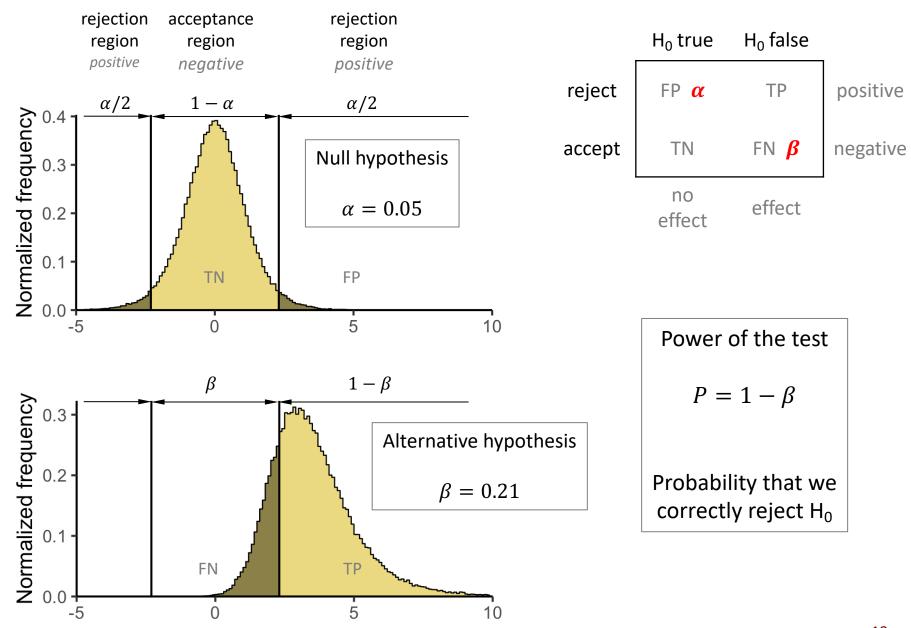


	H_0 is true	H ₀ is false	
H ₀ rejected	type I error (α) false positive	correct decision true positive	Positive
H_0 accepted	correct decision true negative	type II error (β) false negative	Negative
	No effect	Effect	

Gedankenexperiment



One alternative hypothesis

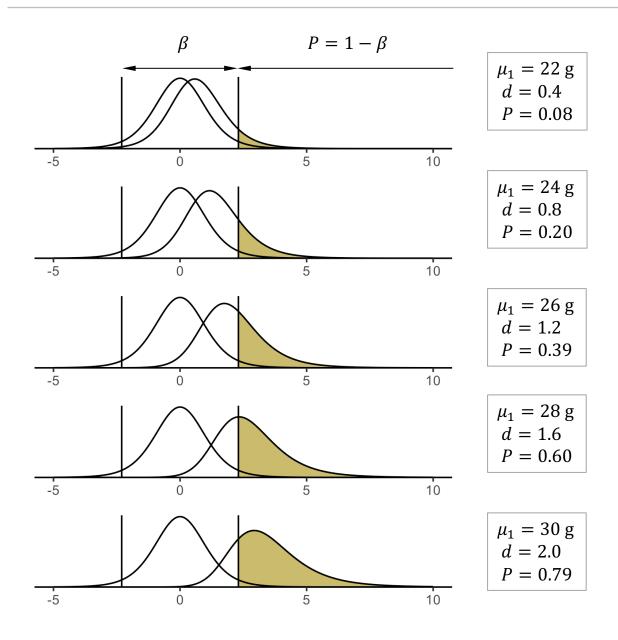


Statistical power

The probability of correctly rejecting the null hypothesis

The probability of detecting an effect which is really there

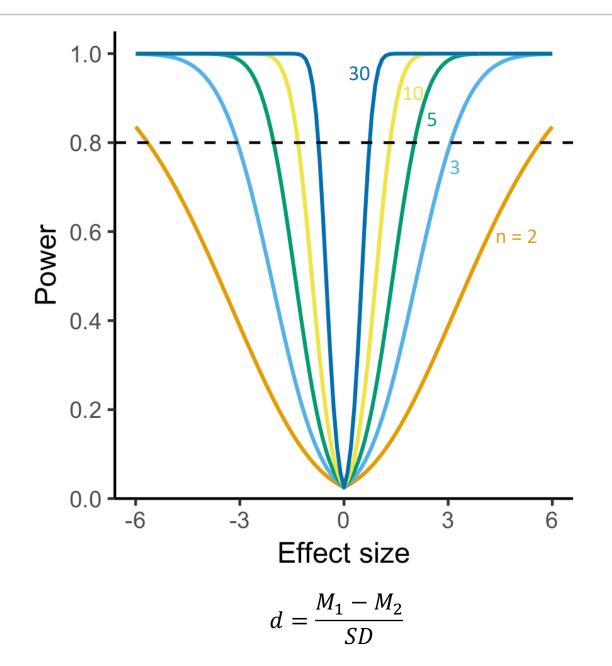
Multiple alternative hypotheses



Power curve



Power curves



How to do it in R?

> library(pwr)

```
# Find sample size required to detect the effect size d = 1, power = 0.8
> pwr.t.test(d=1, power=0.8, type="two.sample", alternative="two.sided")
```

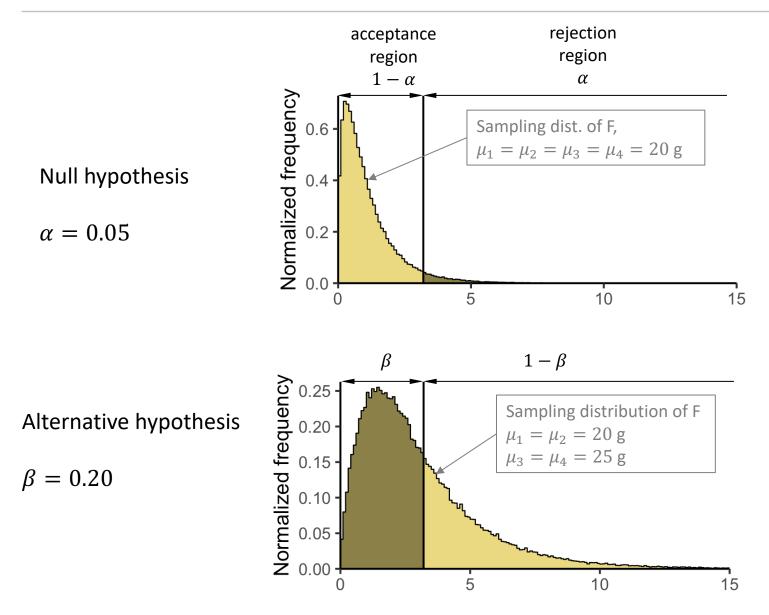
```
Two-sample t test power calculation
    n = 16.71472
    d = 1
    sig.level = 0.05
    power = 0.8
    alternative = two.sided
# The same, but request power = 0.95
> pwr.t.test(d=1, power=0.95, type="two.sample", alternative="two.sided")
```

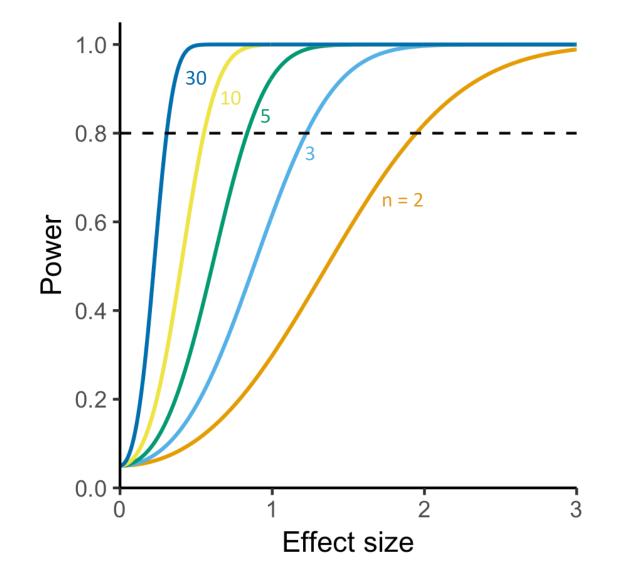
Two-sample t test power calculation

```
n = 26.9892
d = 1
sig.level = 0.05
power = 0.95
alternative = two.sided
```

Statistical power ANOVA

One alternative hypothesis





How to do it in R?

> library(pwr)

```
# Find sample size required to detect a "large" effect size f = 0.4
> pwr.anova.test(k=4, f=0.4, sig.level=0.05, power=0.8)
```

Balanced one-way analysis of variance power calculation

NOTE: n is number in each group

Statistical power Chi-square test Significance of correlation

Power in chi-square test

```
> library(pwr)
# raw data
> d <- rbind(c(68,12), c(70,30))
# Chi-squared statistic
> chi2 <- chisq.test(d, correct = FALSE)$statistic
# Effect size
> w <- sqrt(chi2 / sum(d))
> w
[1] 0.1762268
# Power test
```

```
> pwr.chisq.test(w = w, df=(2-1)*(2-1), power=0.8)
```

Chi squared power calculation

W	=	0.1762268
Ν	=	252.7333
df	=	1
sig.level	=	0.05
power	=	0.8

	Dead	Alive	Total
Drug A	68	12	80
Drug B	70	30	100
Total	138	42	180

NOTE: N is the number of observations

Power in correlation test

> library(pwr)

Power test for correlation coefficient of 0.7

> pwr.r.test(r=0.7, power=0.8)

approximate correlation power calculation (arctangh transformation)

n = 12.81943
r = 0.7
sig.level = 0.05
power = 0.8
alternative = two.sided

```
# Power test for correlation coefficient of 0.5
> pwr.r.test(r=0.5, power=0.8)
```

approximate correlation power calculation (arctangh transformation)

n = 28.24841 r = 0.5sig.level = 0.05 power = 0.8alternative = two.sided

Worked example

Tumour growth in mice

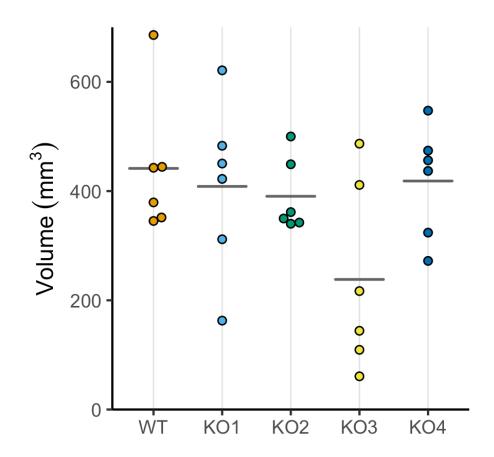
Pilot experiment

WT and 4 KOs mice Observe tumour growth Measure volume after 10 days

Power analysis

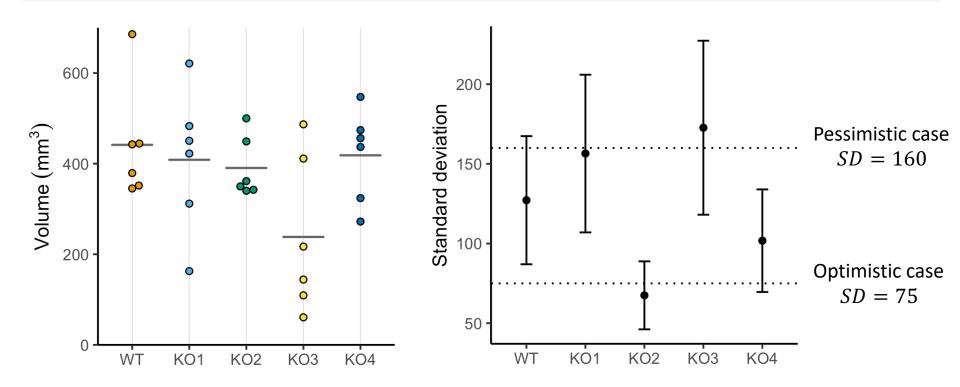
How many replicates do we need to...

- 1) detect a 2-fold change between conditions? (power in t-test)
- 2) detect the observed effect in ANOVA? (power in ANOVA)



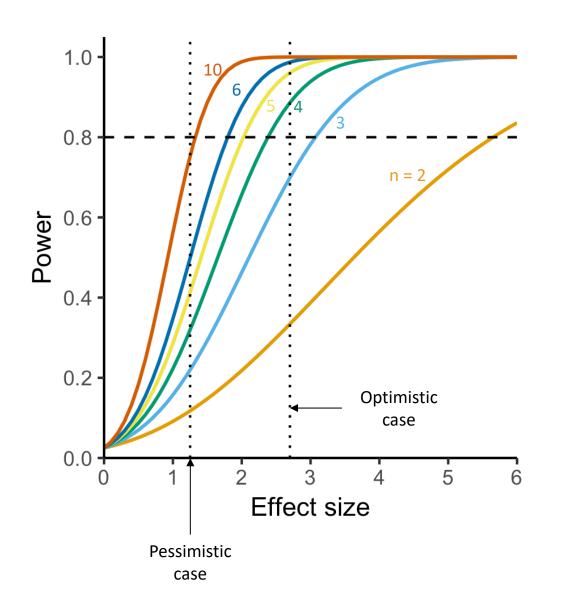
How many replicates to detect a 2-fold change between WT and a KO?

Estimate standard deviation



Standard error of SD
$$SE_{SD} = \frac{SD}{\sqrt{2(n-1)}}$$

Two scenarios, $SD_1 = 75$ and $SD_2 = 160$



Cohen's d:

$$d_1 = \frac{\Delta M}{SD_1} = \frac{200}{75} = 2.7$$

 $d_2 = \frac{\Delta M}{SD_2} = \frac{200}{160} = 1.25$

R power calculations

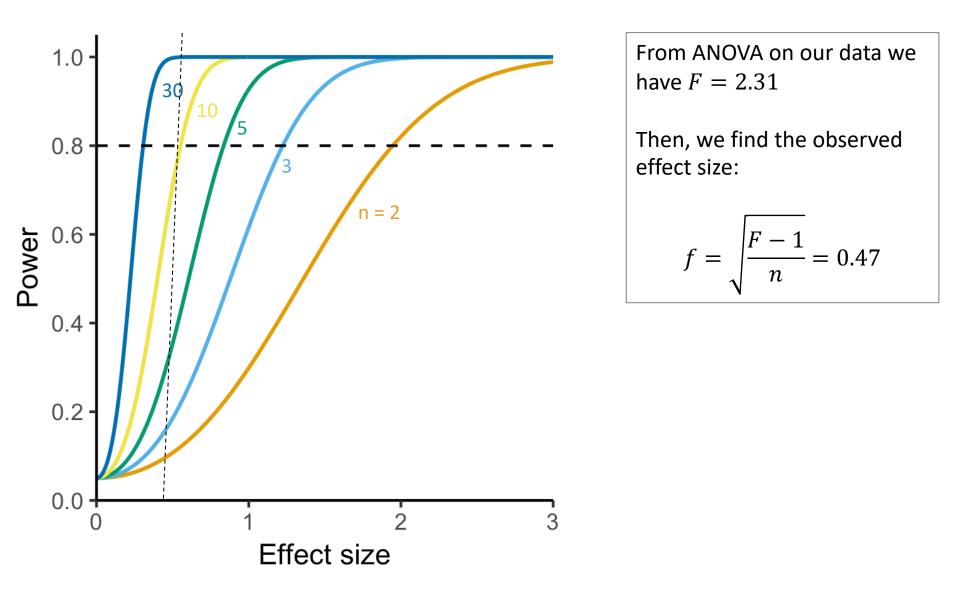
```
> library(pwr)
```

```
# optimistic case
> pwr.t.test(d=2.7, power=0.8)
```

```
Two-sample t test power calculation
              n = 3.435286
              d = 2.7
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is number in *each* group
# pessimistic case
> pwr.t.test(d=1.25, power=0.8)
     Two-sample t test power calculation
              n = 11.0942
              d = 1.25
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is number in *each* group
```

How many replicates to detect the observed effect in ANOVA?

ANOVA power curves



How many replicates do we need?

```
> library(pwr)
# Read data
> tumour <- read.table("http://tiny.cc/mouse_tumour", header=TRUE)
# Here n = 6 and k = 5
> tumour.lm <- lm(Volume ~ Group, data=tumour) # linear model
> tumour.av <- anova(tumour.lm) # perform ANOVA
> F <- tumour.av$`F value`[1] # extract statistic F
> f <- sqrt((F - 1)/6) # Effect size: Cohen's f
# What is the power of this experiment?
> pwr.anova.test(k=5, n=6, f=f)
```

```
k = 5
n = 6
f = 0.4670469
sig.level = 0.05
power = 0.4293041
# How many replicates to get power of 0.8?
> pwr.anova.test(k=5, f=f, power=0.8)
k = 5
n = 11.93119
f = 0.4670469
sig.level = 0.05
```

power = 0.8

Conclusions from our example

- Request power of 0.8
- To detect 2-fold change between WT and a KO in a pessimistic case we need 11 mice in each group
- To detect a change across all groups (ANOVA) we need 12 mice in each group

 We recommend an experiment with at least 12 mice in each group Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html