
11. Statistical power

“If your experiment needs statistics, you ought to have 
done a better experiment”

Ernest Rutherford



Statistical power: what is it about?
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Two populations
(alternative hypothesis)

Effect
size

Sample
size

Two samples Statistical significance

How does our ability to call a change “significant” depend on the effect size 
and the sample size?



Effect size



Effect size describes the alternative hypothesis
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Effect
size



Effect size for two sample means

5

𝑑 =
𝑀$ −𝑀&

𝑆𝐷
Cohen’s d

𝑆𝐷 =
𝑛$ − 1 𝑆𝐷$& + 𝑛& − 1 𝑆𝐷&&

𝑛$ + 𝑛& − 2

𝑑 = 1.1
𝑀 – mean
𝑆𝐷 – standard 
deviation

Horizontal bars represent sample means



Effect size for two sample means
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Cohen, J. (1988). Statistical power 
analysis for the behavioral sciences

d = 0.01 d = 0.2 d = 0.5 d = 0.8 d = 1.2 d = 2



Effect size depends on the standard deviation
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Fold change = 2
Difference between means = 20 g

𝑑 = 1.4 𝑑 = 5.4 𝑑 = 26



Effect size does not depend on the sample size
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Effect size = 0.8

𝑛 = 5
𝑡 = 1.3
𝑝 = 0.2

𝑛 = 20
𝑡 = 2.5
𝑝 = 0.02

𝑛 = 50
𝑡 = 4.0
𝑝 = 0.0001



Comparing two samples
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Statistic Formula Description

Difference ∆𝑀 = 𝑀$ −𝑀&
Absolute difference between sample 
means

Ratio 𝑟 =
𝑀$

𝑀&
Often used as logarithm

Cohen’s d 𝑑 =
𝑀$ −𝑀&

𝑆𝐷
Effect size; takes spread in data into 
account

t-statistic 𝑡 =
𝑀$ −𝑀&

𝑆𝐸
Directly relates to statistical significance; 
takes spread of data and sample size into 
account

𝑀 – mean
𝑆𝐷 – standard deviation
𝑆𝐸 – standard error
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Effect size describes the 
alternative hypothesis

Effect size is not related to 
statistical significance



Effect size in ANOVA
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For the purpose of this calculation we only 
consider groups of equal sizes, 𝑛

𝑓 = 1

Test statistic

𝐹 =
𝑀𝑆:
𝑀𝑆;

H0: 𝑀𝑆: = 𝑀𝑆;

H1: 𝑀𝑆: = 𝑀𝑆; + 𝑛𝑀𝑆<
Added variance

𝑓& =
𝑀𝑆<
𝑀𝑆;

Cohen’s f
𝑓& =

𝐹 − 1
𝑛



Effect size in ANOVA
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𝑓 = 1 𝑓 = 1



Effect size
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Data Statistical test Effect size Formula

Two sets, size 𝑛$ and 𝑛& t-test Cohen’s 𝑑 𝑑 = 𝑡
𝑛$ + 𝑛&
𝑛$𝑛&

𝑘 groups of 𝑛 points 
each ANOVA Cohen’s 𝑓 𝑓 =

𝐹 − 1
𝑛

contingency table chi-square Cohen’s 𝑤 𝑤 =
𝜒&

𝑁

Paired data 𝑥$, 𝑥&, … , 𝑥D
and 𝑦$, 𝑦&, … , 𝑦D

Significance of 
correlation Pearson’s 𝑟 𝑟 =

1
𝑛 − 1F

GH$

D
𝑥G − 𝑀I
𝑆𝐷I

𝑦G − 𝑀J
𝑆𝐷J



Statistical power
t-test



Statistical testing
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Statistical model

Null hypothesis
H0: no effect

All other assumptions

Significance level
𝛼 = 0.05

p-value: probability that the 
observed effect is random

𝑝 < 𝛼
Reject H0

(at your own risk)
Effect is real

𝑝 ≥ 𝛼
Accept H0 (!!!)

Statistical test against H0
Data



This table
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H0 is true H0 is false

H0 rejected type I error 𝜶
false positive

correct decision
true positive Positive

H0 accepted correct decision
true negative

type II error 𝜷
false negative Negative

No effect Effect



Gedankenexperiment

Draw 100,000 pairs of samples 
(𝑋, 𝑌) of size 𝑛 = 5

Find 𝑡 = (𝑀$ − 𝑀&)/𝑆𝐸 for 
each pair

Build sampling distribution of 𝑡
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H0: there is no effect
𝑋 from 𝜇$ = 20 g
𝑌 from 𝜇& = 20 g

H1: there is an effect
𝑋 from 𝜇$ = 20 g
𝑌 from 𝜇& = 30 g



One alternative hypothesis
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Null hypothesis

𝛼 = 0.05

H0 true H0 false

reject FP  𝜶 TP positive

accept TN FN  𝜷 negative

no 
effect effect

acceptance
region

negative

rejection
region

positive

rejection
region
positive

Power of the test

𝑃 = 1 − 𝛽

Probability that we 
correctly reject H0

TN FP

𝛽 1 − 𝛽

Alternative hypothesis

𝛽 = 0.21

FN TP

1 − 𝛼 𝛼/2𝛼/2
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Statistical power

The probability of correctly rejecting the 
null hypothesis

The probability of detecting an effect 
which is really there



Multiple alternative hypotheses
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𝜇$ = 22 g
𝑑 = 0.4
𝑃 = 0.08

𝜇$ = 24 g
𝑑 = 0.8
𝑃 = 0.20

𝜇$ = 26 g
𝑑 = 1.2
𝑃 = 0.39

𝜇$ = 28 g
𝑑 = 1.6
𝑃 = 0.60

𝜇$ = 30 g
𝑑 = 2.0
𝑃 = 0.79

𝛽 𝑃 = 1 − 𝛽



Power curve
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𝛽 𝑃 = 1 − 𝛽

Power: probability of detecting an 
effect when there is an effect

n = 5



Power curves
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n = 2

3

5
10

30

𝑑 =
𝑀$ −𝑀&

𝑆𝐷



How to do it in R?
> library(pwr)

# Find sample size required to detect the effect size d = 1, power = 0.8
> pwr.t.test(d=1, power=0.8, type="two.sample", alternative="two.sided")

Two-sample t test power calculation 

n = 16.71472

d = 1

sig.level = 0.05

power = 0.8

alternative = two.sided

# The same, but request power = 0.95

> pwr.t.test(d=1, power=0.95, type="two.sample", alternative="two.sided")

Two-sample t test power calculation 

n = 26.9892

d = 1

sig.level = 0.05

power = 0.95

alternative = two.sided

23



Statistical power
ANOVA



One alternative hypothesis
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Null hypothesis

𝛼 = 0.05

Sampling dist. of F, 
𝜇$ = 𝜇& = 𝜇\ = 𝜇] = 20 g

acceptance
region
1 − 𝛼

rejection
region
𝛼

Sampling distribution of F 
𝜇$ = 𝜇& = 20 g
𝜇\ = 𝜇] = 25 g

𝛽 1 − 𝛽

Alternative hypothesis

𝛽 = 0.20



Power curves
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n = 2

3

5
10

30



How to do it in R?
> library(pwr)

# Find sample size required to detect a “large” effect size f = 0.4
> pwr.anova.test(k=4, f=0.4, sig.level=0.05, power=0.8)

Balanced one-way analysis of variance power calculation

k = 4
n = 18.04262
f = 0.4

sig.level = 0.05
power = 0.8

NOTE: n is number in each group
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Statistical power
Chi-square test

Significance of correlation



Power in chi-square test
> library(pwr)

# raw data

> d <- rbind(c(68,12), c(70,30))

# Chi-squared statistic

> chi2 <- chisq.test(d, correct = FALSE)$statistic

# Effect size

> w <- sqrt(chi2 / sum(d))

> w

[1] 0.1762268

# Power test

> pwr.chisq.test(w = w, df=(2-1)*(2-1), power=0.8)

Chi squared power calculation 

w = 0.1762268

N = 252.7333

df = 1

sig.level = 0.05

power = 0.8

NOTE: N is the number of observations
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Dead Alive Total

Drug A 68 12 80

Drug B 70 30 100

Total 138 42 180



Power in correlation test
> library(pwr)

# Power test for correlation coefficient of 0.7

> pwr.r.test(r=0.7, power=0.8)

approximate correlation power calculation (arctangh transformation) 

n = 12.81943

r = 0.7

sig.level = 0.05

power = 0.8

alternative = two.sided

# Power test for correlation coefficient of 0.5

> pwr.r.test(r=0.5, power=0.8)

approximate correlation power calculation (arctangh transformation) 

n = 28.24841

r = 0.5

sig.level = 0.05

power = 0.8

alternative = two.sided
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Worked example



Tumour growth in mice
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Pilot experiment
WT and 4 KOs mice
Observe tumour growth
Measure volume after 10 days

Power analysis

How many replicates do we need to...

1) detect a 2-fold change between 
conditions? (power in t-test)

2) detect the observed effect in 
ANOVA? (power in ANOVA)



How many replicates to detect a 2-fold change 
between WT and a KO? 



Estimate standard deviation
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Standard error of SD

𝑆𝐸^_ =
𝑆𝐷

2(𝑛 − 1)

Optimistic case
𝑆𝐷 = 75

Pessimistic case
𝑆𝐷 = 160



Two scenarios, SD1 = 75 and SD2 = 160

35

Cohen’s d:

𝑑$ =
Δ𝑀
𝑆𝐷$

=
200
75

= 2.7

𝑑& =
Δ𝑀
𝑆𝐷&

=
200
160 = 1.25n = 2

3
45

6
10

Pessimistic 
case

Optimistic 
case



R power calculations
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> library(pwr)

# optimistic case
> pwr.t.test(d=2.7, power=0.8)

Two-sample t test power calculation 

n = 3.435286
d = 2.7

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

# pessimistic case
> pwr.t.test(d=1.25, power=0.8)

Two-sample t test power calculation 

n = 11.0942
d = 1.25

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group



How many replicates to detect the observed effect 
in ANOVA? 



ANOVA power curves
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From ANOVA on our data we 
have 𝐹 = 2.31

Then, we find the observed 
effect size:

𝑓 =
𝐹 − 1
𝑛 = 0.47

n = 2

3

5
10

30



How many replicates do we need?
> library(pwr)

# Read data
> tumour <- read.table("http://tiny.cc/mouse_tumour", header=TRUE)
# Here n = 6 and k = 5

> tumour.lm <- lm(Volume ~ Group, data=tumour) # linear model

> tumour.av <- anova(tumour.lm) # perform ANOVA

> F <- tumour.av$`F value`[1] # extract statistic F

> f <- sqrt((F - 1)/6) # Effect size: Cohen's f

# What is the power of this experiment?
> pwr.anova.test(k=5, n=6, f=f)

k = 5

n = 6

f = 0.4670469

sig.level = 0.05

power = 0.4293041

# How many replicates to get power of 0.8?

> pwr.anova.test(k=5, f=f, power=0.8)

k = 5

n = 11.93119

f = 0.4670469

sig.level = 0.05

power = 0.8 39



Conclusions from our example
n Request power of 0.8

n To detect 2-fold change between WT and 
a KO in a pessimistic case we need 11 
mice in each group

n To detect a change across all groups 
(ANOVA) we need 12 mice in each group

n We recommend an experiment with at 
least 12 mice in each group
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Hand-outs available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


