
10. Non-parametric tests

“Statistics are no substitute for judgment”

Henry Clay



Statistical test
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Null hypothesis
H0: no effect

Significance level
𝛼 = 0.05

Statistic T

p-value

𝑝 < 𝛼
Reject H0

𝑝 ≥ 𝛼
Insufficient evidence

Data

Test statistic Tobs



Nonparametric methods
n Parametric methods:

o require finding parameters (e.g. mean)
o sensitive to distributions
o don’t work in some cases
o more powerful

n Nonparametric methods:
o based on ranks
o distribution-free
o wider application
o less powerful
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Parametric
test

Nonparametric
test



Mann-Whitney test
(Wilcoxon rank-sum test)

a nonparametric alternative to t-test



Mann-Whitney test
n Two samples representing random 

variables 𝑋 and 𝑌

n Null hypothesis: there is no shift in 
location (and/or change in shape)

𝐻!: 𝑃 𝑋 > 𝑌 = 𝑃 𝑌 > 𝑋 =
1
2

n Only ranks matter, not actual values
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𝑋 𝑌



Mann-Whitney test
n Two samples:
𝑥", 𝑥#, … , 𝑥$!
𝑦", 𝑦#, … , 𝑦$"

n For each 𝑥% count the number of 𝑦&, such 
that 𝑥% > 𝑦&

n The sum of these counts over all 𝑥% is 𝑈'

n Do the same for 𝑦& and find 𝑈(

n Test statistic

𝑈 = min(𝑈' , 𝑈()
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𝑋 𝑌

𝑈' = 10 𝑈( = 32

𝑈 = 10



Mann-Whitney test
n 𝑈 measures difference in location 

between the samples

n With no overlap 𝑈 = 0
n Direction not important

n 𝑈 = max = $!$"
#

when samples most 
similar
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𝑈

𝑈' 𝑈(



Null distribution

8

𝑛' = 7
𝑛( = 6Population

of mice

Select a pair of samples
size 7 and 6

Find 𝑈

Build distribution
of 𝑈

×10)

Null distribution represents all 
random samples when the null 

hypothesis is true



P-value
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𝑈' = 10 𝑈( = 32

𝑈 = 10

Observation

𝑝 = 0.14



Limited usage for small samples
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Only 5 possible p-values:
0.1, 0.2, 0.4, 0.7, 1𝑝 = 0.1



Comparison to t-test
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t-test
𝑝 = 0.042

MW test
𝑝 = 0.14



What is Mann-Whitney test good for?
n If data are distributed (roughly) normally, use t-test

n MW test is good for weird distributions, e.g. ‘scores’
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𝑛 = 100
𝑈 = 4366
𝑝 = 0.06



What is Mann-Whitney test good for?
n Ordinal variables, e.g., APGAR score
n New pre-natal care program in a rural community
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Usual care 8, 7, 6, 2, 5, 8, 7, 3

New program 9, 8, 7, 8, 10, 9, 6

𝑈 = 9.5
𝑝 = 0.03



How to do it in R?
> x <- c(0, 7, 56, 112, 464, 537, 575)
> y <- c(402, 434, 472, 510, 600, 627)
# Mann-Whitney test
> wilcox.test(x, y)

Wilcoxon rank sum test

data:  x and y
W = 10, p-value = 0.1375
alternative hypothesis: true location shift is not equal to 0

# If both samples have similar shape, then Mann-Whitney test compares medians
# Otherwise, use Mood’s test for medians
> mood.test(x, y)

Mood two-sample test of scale

data:  x and y
Z = 0.55995, p-value = 0.5755
alternative hypothesis: two.sided
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Mann-Whitney test: summary
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Input two samples of 𝑛" and 𝑛# values
values can be ordinal

Assumptions Samples are random and independent (no before/after tests)
If used to compare medians, both distributions must be the 
same

Usage Compare location and shape of two samples

Null hypothesis There is no shift in location and/or change in shape
Stronger version: both samples are from the same distribution

Comments Also known as Wilcoxon rank-sum test
Non-parametric counterpart of t-test
Less powerful than t-test (use t-test if distributions symmetric)
Not very useful for small samples
Doesn’t really give the effect size



Mann-Whitney-Wilcoxon
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Frank Wilcoxon
(1892-1965)

Wilcoxon, F. (1945) ”Individual 
Comparisons by Ranking 
Methods” Biometrics Bulletin
1, 80–83

Henry Berthold Mann
(1905-2000)

Mann, H. B.; Whitney, D. R. (1947). "On a Test of Whether 
one of Two Random Variables is Stochastically Larger than 
the Other" Annals of Mathematical Statistics 18, 50–60

Donald Ransom Whitney
(1915-2007)



Wilcoxon signed-rank test

a nonparametric alternative to paired t-test



Paired data
n Samples are paired
n For example: mouse weight before and 

after obesity treatment

n Null hypothesis: difference between pairs 
follows a symmetric distribution around 
zero

n Example: mouse body mass (g)
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Before: 21.4 20.2 23.5 17.5 18.6 17.0 18.9 19.2

After: 22.6 20.9 23.8 18.0 18.4 17.9 19.3 19.1



Wilcoxon signed-rank test
n Find the differences:

∆%= 𝑦% − 𝑥%

𝑠% = sgn(𝑦% − 𝑥%)

n Order and rank the pairs according to ∆%

𝑅% - rank of the i-the pair

n Test statistic:

𝑊 =F
%*"

$

𝑠%𝑅%
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Wilcoxon signed-rank test
∆%= 𝑦% − 𝑥%

𝑠% = sgn(𝑦% − 𝑥%)

𝑅% - rank of the i-the pair

𝑊 =F
%*"

$

𝑠%𝑅%
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𝑥% 𝑦% Δ% 𝑅% 𝑠% 𝑠%𝑅%
19.2 19.1 0.1 1 -1 -1
18.6 18.4 0.2 2 -1 -2
23.5 23.8 0.3 3 1 3
18.9 19.3 0.4 4 1 4
17.5 18.0 0.5 5 1 5
20.2 20.9 0.7 6 1 6
17.0 17.9 0.9 7 1 7
21.4 22.6 1.2 8 1 8
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Wilcoxon signed-rank test
n 𝑊 measures difference in location 

between pairs of points

n Direction is important

n 𝑊 = 0 when samples most similar
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Null distribution

22

Population
of mice

Select a pair of samples
size 8

Find 𝑊

Build distribution
of 𝑊

×10)

Null distribution represents all 
random samples when the null 

hypothesis is true

Observation

𝑝 = 0.04



How to do it in R?
# Paired t-test

> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)

> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)

> wilcox.test(before, after, paired=TRUE)

Wilcoxon signed rank test

data:  before and after

V = 3, p-value = 0.03906

alternative hypothesis: true location shift is not equal to 0
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Wilcoxon signed-rank test: summary
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Input Sample of 𝑛 pairs of data (before and after)
Values can be ordinal

Assumptions Pairs should be random and independent

Usage Discover change in individual points between before and after

Null hypothesis There is no change between before and after is zero
The difference between before and after follows a symmetric 
distribution around zero

Comments Non-parametric counterpart of paired t-test
Paired data only
Doesn’t care about distributions
Not very useful for small samples



Kruskal-Wallis test

a nonparametric alternative to one-way ANOVA



Alternative formulation of the Mann-Whitney test

n Rank pooled data from the smallest to 
the largest

n Null hypothesis: both samples are 
randomly distributed between available 
rank slots

n Can be extended to more than 2 
samples
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Ranked ANOVA
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Test statistic: use variance between groups
n Variance of rank between groups vs 

random uniform variance

𝐻 =
12

𝑁(𝑁 + 1)
F
+*"

$

𝑛+ �̅�+ −
𝑁 + 1
2

#
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�̅� =
𝑁 + 1
2

�̅�!



Null distribution
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𝑝 = 0.04

𝜒" distribution with 3 d.o.f.

Observation

Population
of mice

Select four samples
size 12, 9, 8 and 5

Find 𝐻

Build distribution
of 𝐻

×10)

Null distribution represents all 
random samples when the null 

hypothesis is true



Comparison to ANOVA
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Kruskal-Wallis

𝑝 = 0.04

ANOVA

𝑝 = 0.18



How to do it in R?
> mice <- read.table('http://tiny.cc/mice_kruskal', header=TRUE)
> kruskal.test(Lifespan ~ Country, data=mice)

Kruskal-Wallis rank sum test

data:  Lifespan by Country

Kruskal-Wallis chi-squared = 8.3617, df = 3, p-value = 0.0391
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What about two-way test?
n Scheirer-Ray-Hare extension to Kruskal-Wallis test
n Briefly: replace values with ranks and carry out two-way ANOVA

Scheirer C.J., Ray W.S. and Hare N (1976), The Analysis of Ranked Data Derived 
from Completely Randomized Factorial Designs, Biometrics, 32, 429-434
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Kruskal-Wallis test: summary
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Input 𝑛 samples of values
𝑁 values divided into 𝑛 groups

Assumptions Samples are random and independent

Usage Compare location and shape of 𝑛 samples

Null hypothesis Mean rank in each group is the same as total mean rank
There is no change between groups

Comments Doesn’t care about distributions



Kolmogorov-Smirnov test

Tест Колмогорова-Смирнова



Cumulative distribution of data

35

Data
𝑛 points

Start at
zero

L
MNL step

Last value is 1



Test statistic

n 𝐷 - maximum vertical difference between two cumulative distributions
n It measures distance between samples
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𝐷 = 0.42



Test statistic

n 𝐷 - maximum vertical difference between two cumulative distributions
n It measures distance between samples
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𝐷 = 0.83



Null distribution
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𝑛" = 12
𝑛# = 9

𝐷 = 0.42

𝑝 = 0.25

Null distribution represents all possible 
samples under the null hypothesis.

Kolmogorov distribution approximates it

𝐷 = 0.42



KS test is sensitive to location and shape
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𝐷 = 0.67
𝑝 = 0.008

𝐷 = 0.5
𝑝 = 0.04



KS-test does not work for small samples!
n Consider two samples of size 𝑛' = 𝑛( = 3

n There are only three possible values of 
statistic 𝐷
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𝐷 𝑝

1/3 1

2/3 0.6

1 0.1



How to do it in R?
> mice <- read.table('http://tiny.cc/mice_kruskal', header=TRUE)
> sco <- mice[mice$Country=='Scottish', 'Lifespan']
> eng <- mice[mice$Country=='English', 'Lifespan']
> ks.test(eng, sco)

Two-sample Kolmogorov-Smirnov test

data:  eng and sco
D = 0.41667, p-value = 0.3338
alternative hypothesis: two-sided

Warning message:
In ks.test(eng, sco) : cannot compute exact p-value with ties

41



Kolmogorov-Smirnov test: summary
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Input two samples of 𝑛" and 𝑛# values

Assumptions Samples are random and independent (no before-after)
Variables should be continuous (no discrete data)

Usage Compare distributions of two samples

Null hypothesis Both samples are drawn from the same distribution

Comments Doesn’t care about distributions
Not very useful for small samples
It is too conservative for discrete distributions



Comparison of two-sample tests

43

Test p-value

t-test 0.96

Mann-Whitney 0.41

Kolmogorov-Smirnov 0.33

Test p-value

t-test 0.07

Mann-Whitney 0.04

Kolmogorov-Smirnov 0.01



Which test should I use?
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Outcome of the experiment

Goal Measurement
(symmetric)

Measurement
(asymmetric) Ordinal Category

Compare 
central value of 
two unpaired 
groups

t-test Mann-Whitney
Efron-Tibshirani

Mann-Whitney Fisher’s
Chi-square
G-test
Monte-Carlo

Compare 
distributions of
two unpaired 
groups

Kolmogorov-Smirnov
Mann-Whitney

permutation

Compare two 
paired groups

paired t-test Wilcoxon signed-rank test Wilcoxon signed-
rank test
permutation
bootstrap

McNemar’s test

Compare three 
of more groups

ANOVA Kruskal-Wallis Kruskal-Wallis Chi-square
G-test
Monte-Carlo



What type of test?
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Measurement

Ordinal

Normal?

Parametric

Can transform
to normal?

Non-parametric

Y Y

N

N

Out-of-scale
values?

N

Y

Experiment
outcome

Category

Contingency



APPENDIX

Permutation and bootstrap test



Approximating the null distribution
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Theoretical
population

Select two samples
with sizes as in 
data in question

Find test statistic, 𝑇

Build distribution
of 𝑇

×10)

Gedankenexperiment

Approximate
population

from samples

Select two samples
with sizes as in 
data in question

Find test statistic, 𝑇

Build distribution
of 𝑇

×10)

Real calculation



Permutation test
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𝐷

𝐷!"#

𝑋 𝑌

Pooled

𝐷,-.

𝐷"

𝐷#

𝐷#
...

𝑛' 𝑛(

𝑛' 𝑛(

Free choice of test 
statistic:

𝐷 = �̅� − T𝑦

𝐷 = U𝑥 − U𝑦

𝐷 =
�̅�
T𝑦

...Random partition 
into 𝑛' and 𝑛(

Pooled samples 
approximate the 
population

Simulated 
distribution of 𝐷
approximates the 
null distribution



Permutation test
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Permutation test

n Other metrics can be used: difference between the medians, trimmed means, 
ratio, …

n But again: doesn’t work for small samples, only 5 discrete p-values for 𝑛 = 3
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𝐷,-. = −171

𝑝 = 0.07



How to do it in R?
> library(coin)
> mice <- read.table("http://tiny.cc/mice_kruskal", header=TRUE)
> mice2 <- mice[mice$Country %in% c("English", "N.Irish"),] 
> oneway_test(Lifespan ~ Country, mice2, alternative="greater", 
distribution=approximate(B=100000))

Approximative Two-Sample Fisher-Pitman Permutation Test

data:  Lifespan by Country (English, N.Irish)
Z = 1.5587, p-value = 0.06603
alternative hypothesis: true mu is greater than 0
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Efron-Tibshirani bootstrap test
n Two samples, size 𝑛' and 𝑛(
n The null hypothesis: 𝜇" = 𝜇#

n 𝑀 - mean across two samples
n Shift the samples to common mean:

𝑥′% = 𝑥% − �̅� + 𝑀

𝑦′% = 𝑦% − T𝑦 +𝑀

n Pool them together

𝑍 = (𝑥"/ , … , 𝑥$!
/ , 𝑦"/ , … , 𝑦$"

/ )

n Draw 𝑛' and 𝑛( points from Z with 
replacement

n Find t-statistic for them
n Build distribution of 𝑡

n Compare with 𝑡,-.
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𝑡

𝑡!"#



Permutation vs bootstrap

Permutation

n Draw without replacement

Bootstrap

n Draw with replacement
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1 2 3 4 5 6 7 8 9 10

6 9 5 2 10 1 3 4 8 7

3 8 2 5 6 1 7 10 4 9

6 7 8 5 2 10 9 1 3 4

1 2 3 4 5 6 7 8 9 10

8 10 5 2 5 3 3 8 2 6

9 2 7 2 8 8 7 3 2 2

7 1 4 1 8 6 6 2 6 9



Bootstrap test

n Two-sided 𝑝 = 0.09
n Less accurate than permutation test
n Bootstrap has more applications
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𝑡,-. = −2.0

𝑝 = 0.03



How to do it in R?
> mice <- read.table("http://tiny.cc/mice_kruskal", header=TRUE)

> mice2 <- mice[mice$Country %in% c("English", "N.Irish"),]

> nEng <- length(which(mice$Country == "English"))

> nBoot <- 10000

> tstat <- function(data) {

x <- data[1:nEng, 2]

y <- data[(nEng+1):nrow(data), 2]

tobj <- t.test(y, x)

t <- tobj$statistic

return(t)

}

> bootstat <- function(data, indices) {

d <- data[indices,] # allows boot to select sample

t <- tstat(d)

return(t)

}

> library(boot)

> b <- boot(data=mice2, statistic=bootstat, R=nBoot)

> p <- length(which(b$t < b$t0)) / nBoot

> p

[1] 0.027
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Two-sample test comparison
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Test Statistic p-value
(two-sided)

Comments

t-test 𝑡 = 2.00 0.068 Not appropriate for skewed 
distributions

Mann-Whitney 𝑈 = 50 0.040 Compares location and shape

Kolmogorov-Smirnov 𝐷 = 0.83 0.015 Compares distributions

permutation 𝐷 = −171 0.12 Compares a parameter, distribution-
free

E-T bootstrap 𝑡 = −2.00 0.094 Compares means, distribution-free



APPENDIX

Monte Carlo chi-square test



Contingency tables
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Drawn Not drawn Total

White 𝑘 𝑚 − 𝑘 20

Black 𝑛 − 𝑘 𝑁 + 𝑘 − 𝑛 −𝑚 16

Total 10 26 36

0 20

10 6

1 19

9 7

2 18

8 8

3 17

7 9

4 16

6 10

5 15

5 11

6 14

4 12

7 13

3 13

8 12

2 14

9 11

1 15

10 10

0 16

Fisher’s test – count all possible combinations 

WT KO1 KO2 KO3

G1 50 61 78 43

S 172 175 162 178

G2 55 45 47 59

Chi-square test – find p-value from an asymptotic 
distribution

𝑝 = 0.02



Generate a random subset of all combinations
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WT KO1 KO2 KO3 Sum

G1 50 61 78 43 232

S 172 175 162 178 687

G2 55 45 47 59 206

Sum 277 281 287 280 1125

62 54 63 53
167 175 176 169
48 52 48 58

𝜒# = 2.87

59 70 52 51
164 161 186 176
54 50 49 53

𝜒# = 6.40

57 56 58 61
164 173 172 178
56 52 57 41

𝜒# = 3.78Null hypothesis:

proportions in rows and columns are 
independent

or

sums in rows and columns are fixed

...



Real experiment
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Contingency
table

Redistribute counts, 
keeping row and 

column sums fixed 

Find 𝜒#

Build distribution
of 𝜒#

×10)
Observation

𝑝 = 0.019



How to do it in R?
# Flow cytometry experiment

> flcyt <- rbind(c(50,61,78,43), c(172,175,162,178), c(55,45,47,59))

> chisq.test(flcyt, simulate.p.value = TRUE, B=100000)

Pearson's Chi-squared test with simulated p-value (based on 1e+05 
replicates)

data:  flcyt

X-squared = 15.22, df = NA, p-value = 0.01944

# Pearson’s test with asymptotic distribution

> chisq.test(flcyt)

Pearson's Chi-squared test

data:  flcyt

X-squared = 15.122, df = 6, p-value = 0.01933
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Monte Carlo chi-square test: summary
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Input 𝑛0×𝑛1 contingency table
table contains counts

Assumptions Observations are random and independent (no before-after)
Mutual exclusivity (no overlap between categories)
Errors don’t have to be normal
Counts can be small

Usage Examine if there is an association (contingency) between two 
variables; whether the proportions in “groups” depend on the 
“condition” (and vice versa)

Null hypothesis The proportions between rows do not depend on the choice of 
column

Comments Almost exact (with large number of bootstraps)
Computationally expensive



Hand-outs available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


