10. Non-parametric tests

"Statistics are no substitute for judgment"

Henry Clay

Nonparametric methods

Parametric methods: Parametric Nonparametric □ require finding parameters (e.g. mean) test test □ sensitive to distributions □ don't work in some cases 27 11 □ more powerful 10 9 24 Nonparametric methods: 8 □ based on ranks 7 Rank Value □ distribution-free 6 21 $\hfill\square$ wider application 5

18

Ctrl

Treat

□ less powerful

Treat

4

3

2

1

Ctrl

Mann-Whitney test (Wilcoxon rank-sum test)

a nonparametric alternative to t-test

Mann-Whitney test

- Two samples representing random variables X and Y
- Null hypothesis: there is no shift in location (and/or change in shape)

$$H_0: P(X > Y) = P(Y > X) = \frac{1}{2}$$

Only ranks matter, not actual values

Mann-Whitney test

- Two samples:
 x₁, x₂, ..., x_{n_x}
 y₁, y₂, ..., y_{n_y}
- For each x_i count the number of y_j, such that x_i > y_j
- The sum of these counts over all x_i is U_x
- Do the same for y_j and find U_y

Test statistic

 $U = \min(U_x, U_y)$

Mann-Whitney test

- U measures difference in location between the samples
- With no overlap U = 0
- Direction not important

•
$$U = \max = \left\lfloor \frac{n_{\chi}n_{y}}{2} \right\rfloor$$
 when samples most similar

Null distribution

P-value

U = 10

Limited usage for small samples

Comparison to t-test

What is Mann-Whitney test good for?

- If data are distributed (roughly) normally, use t-test
- MW test is good for weird distributions, e.g. 'scores'

What is Mann-Whitney test good for?

- Ordinal variables, e.g., APGAR score
- New pre-natal care program in a rural community

Usual care	8, 7, 6, 2, 5, 8, 7, 3
New program	9, 8, 7, 8, 10, 9, 6

How to do it in R?

> x <- c(0, 7, 56, 112, 464, 537, 575)
> y <- c(402, 434, 472, 510, 600, 627)
Mann-Whitney test
> wilcox.test(x, y)

Wilcoxon rank sum test

data: x and yW = 10, p-value = 0.1375alternative hypothesis: true location shift is not equal to 0

If both samples have similar shape, then Mann-Whitney test compares medians
Otherwise, use Mood's test for medians
> mood.test(x, y)

Mood two-sample test of scale

```
data: x and y
Z = 0.55995, p-value = 0.5755
alternative hypothesis: two.sided
```

Input	two samples of n_1 and n_2 values values can be ordinal
Assumptions	Samples are random and independent (no before/after tests) If used to compare medians, both distributions must be the same
Usage	Compare location and shape of two samples
Null hypothesis	There is no shift in location and/or change in shape Stronger version: both samples are from the same distribution
Comments	Also known as Wilcoxon rank-sum test Non-parametric counterpart of t-test Less powerful than t-test (use t-test if distributions symmetric) Not very useful for small samples Doesn't really give the effect size

Mann-Whitney-Wilcoxon

Frank Wilcoxon (1892-1965)

Wilcoxon, F. (1945) "Individual Comparisons by Ranking Methods" *Biometrics Bulletin* **1**, 80–83

Henry Berthold Mann (1905-2000)

Donald Ransom Whitney (1915-2007)

Mann, H. B.; Whitney, D. R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other" *Annals of Mathematical Statistics* **18**, 50–60

a nonparametric alternative to paired t-test

Paired data

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: difference between pairs follows a symmetric distribution around zero
- Example: mouse body mass (g)

Before:	21.4	20.2	23.5	17.5	18.6	17.0	18.9	19.2
After:	22.6	20.9	23.8	18.0	18.4	17.9	19.3	19.1

Find the differences:

 $\Delta_i = |y_i - x_i|$

- $s_i = \operatorname{sgn}(y_i x_i)$
- Order and rank the pairs according to Δ_i
 - R_i rank of the *i*-the pair
- Test statistic:

$$W = \sum_{i=1}^{n} s_i R_i$$

 $\Delta_i = |y_i - x_i|$

$$s_i = \operatorname{sgn}(y_i - x_i)$$

 R_i - rank of the *i*-the pair

$$W = \sum_{i=1}^{n} s_i R_i$$

x_i	y_i	Δ_i	R_i	S _i	s _i R _i
19.2	19.1	0.1	1	-1	-1
18.6	18.4	0.2	2	-1	-2
23.5	23.8	0.3	3	1	3
18.9	19.3	0.4	4	1	4
17.5	18.0	0.5	5	1	5
20.2	20.9	0.7	6	1	6
17.0	17.9	0.9	7	1	7
21.4	22.6	1.2	8	1	8
					30

- W measures difference in location between pairs of points
- Direction is important
- W = 0 when samples most similar

Null distribution

How to do it in R?

```
# Paired t-test
> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)
> wilcox.test(before, after, paired=TRUE)
```

Wilcoxon signed rank test

data: before and after V = 3, p-value = 0.03906 alternative hypothesis: true location shift is not equal to 0

Wilcoxon signed-rank test: summary

Input	Sample of <i>n</i> pairs of data (<i>before</i> and <i>after</i>) Values can be ordinal
Assumptions	Pairs should be random and independent
Usage	Discover change in individual points between before and after
Null hypothesis	There is no change between <i>before</i> and <i>after</i> is zero The difference between <i>before</i> and <i>after</i> follows a symmetric distribution around zero
Comments	Non-parametric counterpart of paired t-test Paired data only Doesn't care about distributions Not very useful for small samples

Kruskal-Wallis test

a nonparametric alternative to one-way ANOVA

Alternative formulation of the Mann-Whitney test

Ranked ANOVA

Test statistic: use variance between groups

Null distribution

Comparison to ANOVA

How to do it in R?

> mice <- read.table('http://tiny.cc/mice_kruskal', header=TRUE)
> kruskal.test(Lifespan ~ Country, data=mice)

Kruskal-Wallis rank sum test

data: Lifespan by Country
Kruskal-Wallis chi-squared = 8.3617, df = 3, p-value = 0.0391

What about two-way test?

- Scheirer-Ray-Hare extension to Kruskal-Wallis test
- Briefly: replace values with ranks and carry out two-way ANOVA

Scheirer C.J., Ray W.S. and Hare N (1976), The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs, *Biometrics*, **32**, 429-434

Input	n samples of values N values divided into n groups
Assumptions	Samples are random and independent
Usage	Compare location and shape of <i>n</i> samples
Null hypothesis	Mean rank in each group is the same as total mean rank There is no change between groups
Comments	Doesn't care about distributions

Kolmogorov-Smirnov test

Тест Колмогорова-Смирнова

Cumulative distribution of data

Test statistic

- D maximum vertical difference between two cumulative distributions
- It measures distance between samples

Test statistic

- D maximum vertical difference between two cumulative distributions
- It measures distance between samples

Null distribution

Null distribution represents all possible samples under the null hypothesis.

Kolmogorov distribution approximates it

KS test is sensitive to location and shape

KS-test does not work for small samples!

- Consider two samples of size $n_x = n_y = 3$
- There are only three possible values of statistic *D*

D	p
1/3	1
2/3	0.6
1	0.1

How to do it in R?

```
> mice <- read.table('http://tiny.cc/mice_kruskal', header=TRUE)
> sco <- mice[mice$Country=='Scottish', 'Lifespan']
> eng <- mice[mice$Country=='English', 'Lifespan']
> ks.test(eng, sco)
```

Two-sample Kolmogorov-Smirnov test

data: eng and sco D = 0.41667, p-value = 0.3338 alternative hypothesis: two-sided

Warning message: In ks.test(eng, sco) : cannot compute exact p-value with ties

Kolmogorov-Smirnov test: summary

Input	two samples of n_1 and n_2 values
Assumptions	Samples are random and independent (no before-after) Variables should be continuous (no discrete data)
Usage	Compare distributions of two samples
Null hypothesis	Both samples are drawn from the same distribution
Comments	Doesn't care about distributions Not very useful for small samples It is too conservative for discrete distributions

Comparison of two-sample tests

Test	p-value
t-test	0.96
Mann-Whitney	0.41
Kolmogorov-Smirnov	0.33

Test	p-value
t-test	0.07
Mann-Whitney	0.04
Kolmogorov-Smirnov	0.01

Which test should I use?

		experiment								
Goal	Measurement (symmetric)	Category								
Compare central value of two unpaired groups	t-test	Fisher's Chi-square G-test Monte-Carlo								
Compare distributions of two unpaired groups		Kolmogorov-Smirnov Mann-Whitney permutation								
Compare two paired groups	paired t-test	Wilcoxon signed-rank test	Wilcoxon signed- rank test permutation bootstrap	McNemar's test						
Compare three ANOVA of more groups		Kruskal-Wallis	Kruskal-Wallis	Chi-square G-test Monte-Carlo						

What type of test?

APPENDIX

Permutation and bootstrap test

Approximating the null distribution

Permutation test

Permutation test

٠

•

•

٠

7.

•

٠

٠

٠

Permutation test

- Other metrics can be used: difference between the medians, trimmed means, ratio, ...
- But again: doesn't work for small samples, only 5 discrete p-values for n = 3

How to do it in R?

> library(coin)

```
> mice <- read.table("http://tiny.cc/mice_kruskal", header=TRUE)
> mice2 <- mice[mice$Country %in% c("English", "N.Irish"),]
> oneway_test(Lifespan ~ Country, mice2, alternative="greater",
distribution=approximate(B=100000))
```

Approximative Two-Sample Fisher-Pitman Permutation Test

```
data: Lifespan by Country (English, N.Irish)
Z = 1.5587, p-value = 0.06603
alternative hypothesis: true mu is greater than 0
```

Efron-Tibshirani bootstrap test

- Two samples, size n_x and n_y
- The null hypothesis: $\mu_1 = \mu_2$
- M mean across two samples
- Shift the samples to common mean:

 $x'_{i} = x_{i} - \bar{x} + M$ $y'_{i} = y_{i} - \bar{y} + M$

Pool them together

 $Z = (x'_1, ..., x'_{n_x}, y'_1, ..., y'_{n_y})$

- Draw n_x and n_y points from Z with replacement
- Find t-statistic for them
- Build distribution of t
- Compare with t_{obs}

Permutation vs bootstrap

Permutation

Bootstrap

Draw without replacement

Draw with replacement

1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
6	9	5	2	10	1	3	4	8	7	8	10	5	2	5	3	3	8	2	6
3	8	2	5	6	1	7	10	4	9	9	2	7	2	8	8	7	3	2	2
6	7	8	5	2	10	9	1	3	4	7	1	4	1	8	6	6	2	6	9

Bootstrap test

- Two-sided p = 0.09
- Less accurate than permutation test
- Bootstrap has more applications

How to do it in R?

```
> mice <- read.table("http://tiny.cc/mice_kruskal", header=TRUE)
> mice2 <- mice[mice$Country %in% c("English", "N.Irish"),]
> nEng <- length(which(mice$Country == "English"))
> nBoot <- 10000</pre>
```

```
> tstat <- function(data) {</pre>
    x \ll data[1:nEng, 2]
    y <- data[(nEng+1):nrow(data), 2]</pre>
    tobj <- t.test(y, x)</pre>
    t <- tobj$statistic
    return(t)
}
 bootstat <- function(data, indices) {</pre>
>
    d <- data[indices,] # allows boot to select sample</pre>
    t <- tstat(d)
    return(t)
}
> library(boot)
> b <- boot(data=mice2, statistic=bootstat, R=nBoot)</pre>
> p <- length(which(b$t < b$t0)) / nBoot</pre>
> p
[1] 0.027
```

Two-sample test comparison

Test	Statistic	p-value (two-sided)	Comments
t-test	t = 2.00	0.068	Not appropriate for skewed distributions
Mann-Whitney	U = 50	0.040	Compares location and shape
Kolmogorov-Smirnov	D = 0.83	0.015	Compares distributions
permutation	D = -171	0.12	Compares a parameter, distribution- free
E-T bootstrap	t = -2.00	0.094	Compares means, distribution-free

APPENDIX

Monte Carlo chi-square test

Contingency tables

Fisher's test – count all possible combinations

Chi-square test – find p-value from an asymptotic distribution

	WT	KO1	KO2	KO3
G1	50	61	78	43
S	172	175	162	178
G2	55	45	47	59

Generate a random subset of all combinations

	WT	KO1	KO2	KO3	Sum
G1	50	61	78	43	232
S	172	175	162	178	687
G2	55	45	47	59	206
Sum	277	281	287	280	1125

Null hypothesis:

proportions in rows and columns are independent

or

sums in rows and columns are fixed

	62	54	63	53	
	167	175	176	169	$\chi^2 = 2.87$
	48	52	48	58	
	59	70	52	51	
	164	161	186	176	$\chi^2 = 6.40$
	54	50	49	53	
_					_
	57	56	58	61	
	164	173	172	178	$\chi^2 = 3.78$
	56	52	57	41	

. . .

Real experiment

How to do it in R?

Flow cytometry experiment

> flcyt <- rbind(c(50,61,78,43), c(172,175,162,178), c(55,45,47,59))</pre>

```
> chisq.test(flcyt, simulate.p.value = TRUE, B=100000)
```

Pearson's Chi-squared test with simulated p-value (based on 1e+05 replicates)

```
data: flcyt
X-squared = 15.22, df = NA, p-value = 0.01944
```

```
# Pearson's test with asymptotic distribution
> chisq.test(flcyt)
```

```
Pearson's Chi-squared test
```

```
data: flcyt
x-squared = 15.122, df = 6, p-value = 0.01933
```

Monte Carlo chi-square test: summary

Input	$n_r \times n_c$ contingency table table contains counts
Assumptions	Observations are random and independent (no before-after) Mutual exclusivity (no overlap between categories) Errors don't have to be normal Counts can be small
Usage	Examine if there is an association (contingency) between two variables; whether the proportions in "groups" depend on the "condition" (and vice versa)
Null hypothesis	The proportions between rows do not depend on the choice of column
Comments	Almost exact (with large number of bootstraps) Computationally expensive

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html