9. ANOVA

"Statistics is the science of variation"

Douglas M. Bates

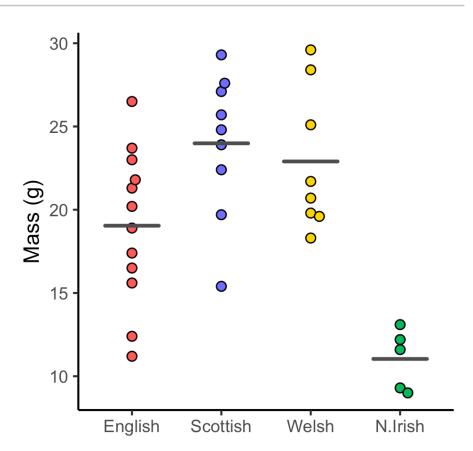
One-way ANOVA

One-way ANOVA

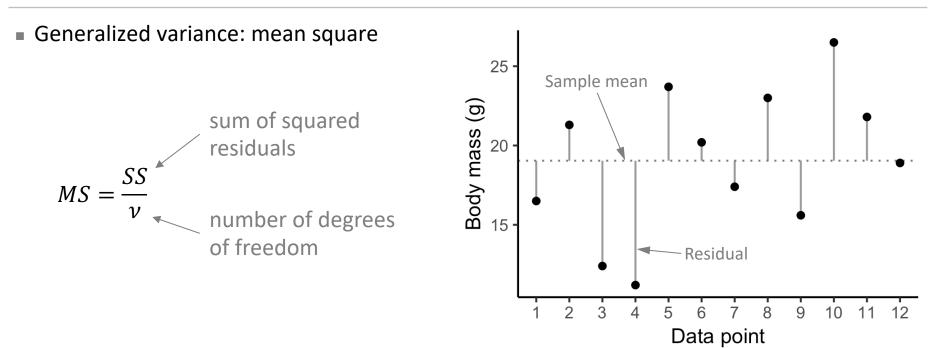
- Extension of the t-test to more than 2 groups
- Null hypothesis: all samples came from populations with the same mean

 $\blacksquare \mathsf{H}_0: \mu_1 = \mu_2 = \dots = \mu_k$

- The null hypothesis is tested by comparing variances
- ANOVA ANalysis Of VAriance



Variance

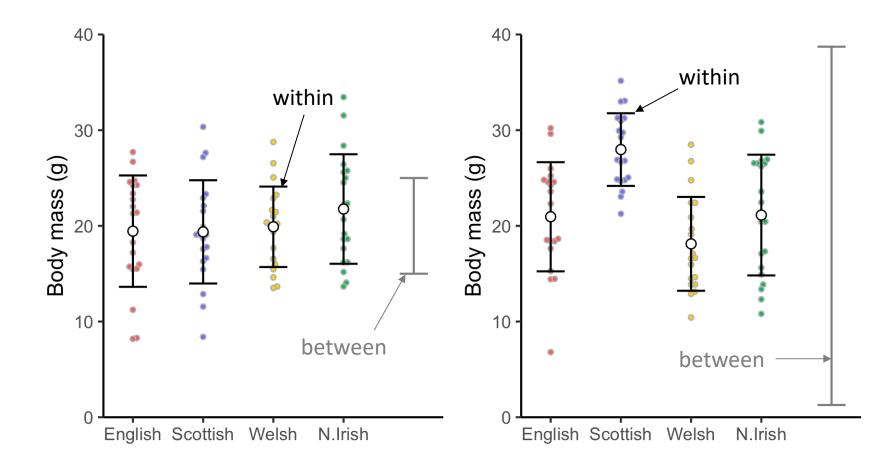


Variance represents spread of data around their mean

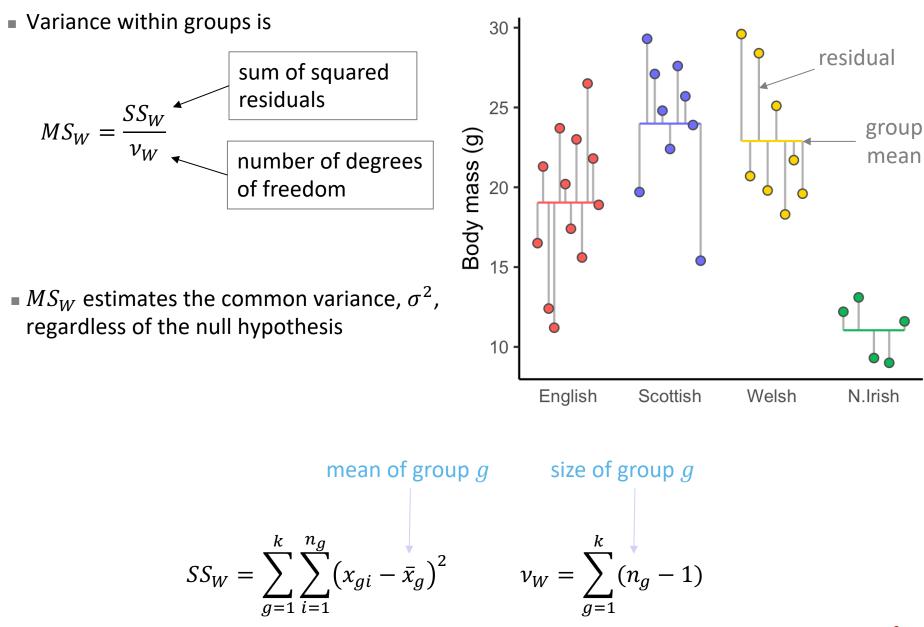
Variance = standard deviation²

Variance between and within groups

- Variance within groups typical variance in each group, represents random noise
- Variance between groups how the sample mean varies from group to group

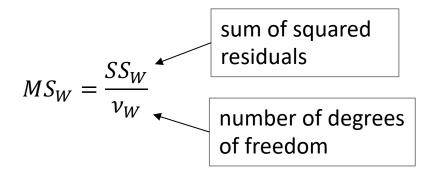


Variance within groups



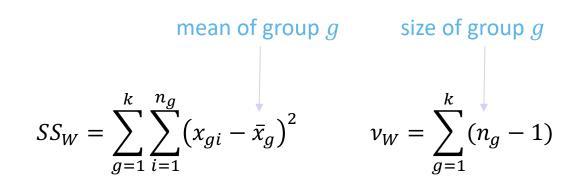
Variance within groups

Variance within groups is

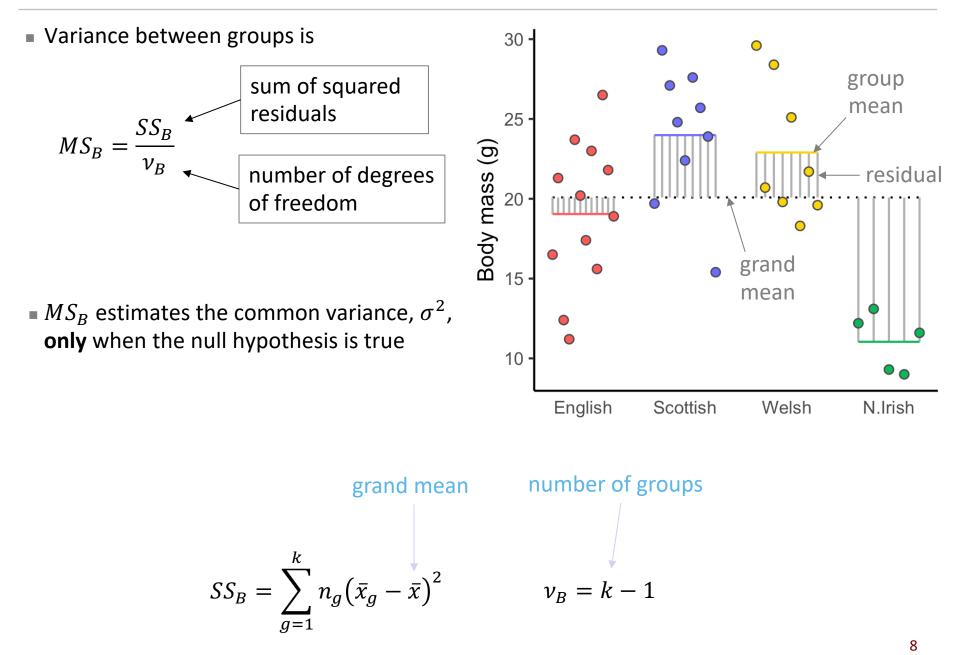


SS _W	524
$ u_W$	30
MS_W	17.5

• MS_W estimates the common variance, σ^2 , regardless of the null hypothesis



Variance between groups

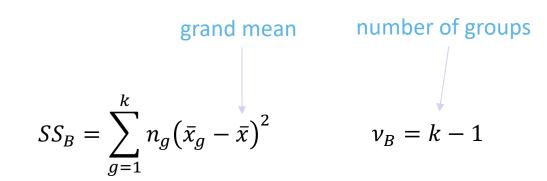


Variance between groups

Variance between groups is

sum of squared	SS_W	524
SS _B residuals	$ u_W$	30
$MS_B = \frac{1}{N}$	MS_W	17.5
vB number of degrees of freedom	SS _B	623
	$ u_B$	3
	MS_B	208

• MS_B estimates the common variance, σ^2 , **only** when the null hypothesis is true

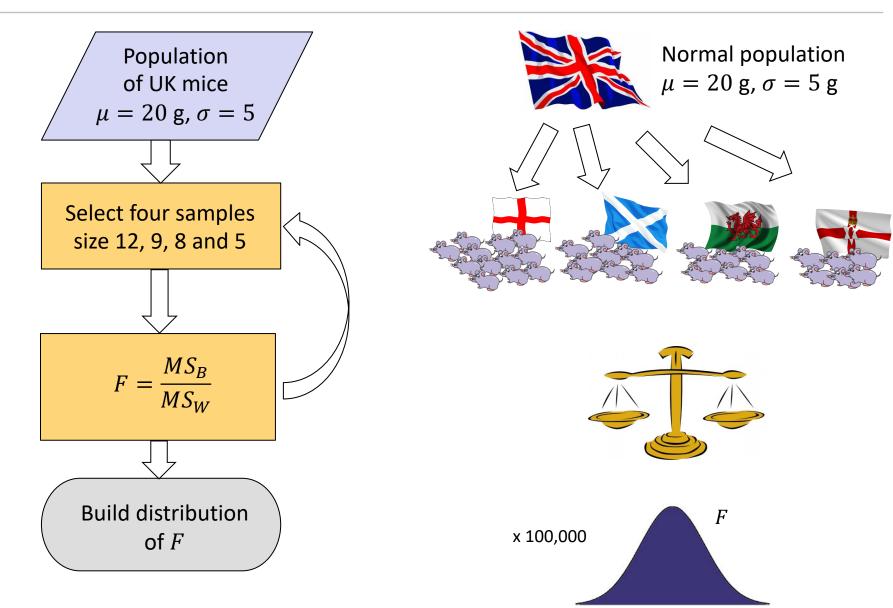


F-test

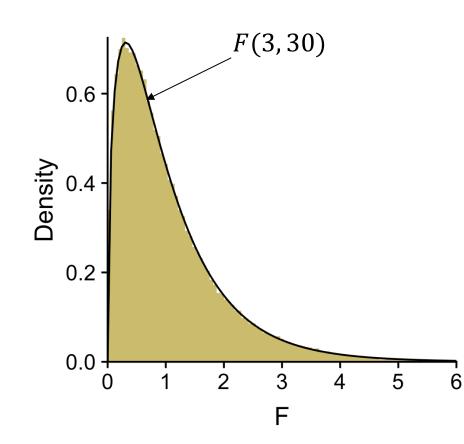
• MS_W estimates the common variance, σ^2 ,		
regardless of the null hypothesis	SS_W	524
$-MS$ actimates the common variance σ^2	$ u_W$	30
■ MS_B estimates the common variance, σ^2 , only when the null hypothesis is true	MS_W	17.5
	SS_B	623
	$ u_B$	3
Test for equality of variances: F-test	MS_B	208
Test for equality of variances. These	F	11.9
$F = \frac{MS_B}{MS_W}$		

- Degrees of freedom: v_B , v_W
- If H_0 is true, we expect $F \sim 1$

Null distribution



Null distribution = *F*-distribution



SS _W	524
$ u_W$	30
MS _W	17.5
SS_B	623
$ u_B$	3
MS_B	208
F	11.9

> 1 - pf(11.9, 3, 30)
[1] 2.648577e-05

Null distribution represents all random samples when the null hypothesis is true

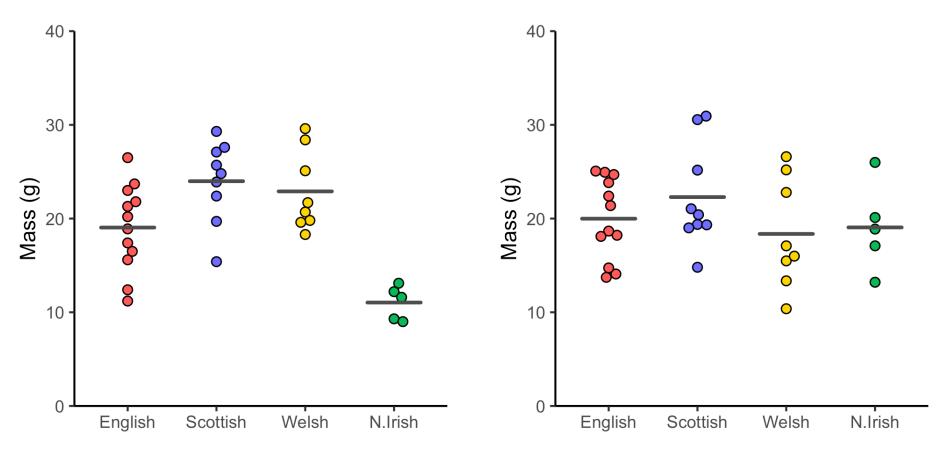
ANOVA in R

ANOVA
<pre>> mice <- read.table("http://tiny.cc/mice_1way", header=TRUE)</pre>
<pre>> mice.lm <- lm(Mass ~ Country, data=mice)</pre>
> anova(mice.lm)
Analysis of Variance Table
Response: Mass
Df Sum Sq Mean Sq F value Pr(>F)
Country 3 622.68 207.560 11.886 2.674e-05 ***
Residuals 30 523.89 17.463
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> mice Country Mass 1 English 16.5 2 English 21.3 3 English 12.4 English 11.2 4 5 English 23.7 English 20.2 6 English 17.4 7 English 23.0 8 9 English 15.6 English 26.5 10 English 21.8 11 12 English 18.9 13 Scottish 19.7 14 Scottish 29.3 15 Scottish 27.1 16 Scottish 24.8 17 Scottish 22.4 18 Scottish 27.6 19 Scottish 25.7 20 Scottish 23.9 21 Scottish 15.4 22 Welsh 29.6 23 Welsh 20.7 24 Welsh 28.4 25 Welsh 19.8 . . .

Effect vs. no effect

	17.5 g ² 208 g ²		25.7 g ² 24.3 g ²
F	11.9	F	0.94
p	3×10^{-5}	p	0.43



ANOVA assumptions

Normality – data in each group are distributed normally

 ANOVA is quite robust against non-normality
 if strongly not normal (e.g. log-normal) – transform to normality
 if this fails, use non-parametric Kruskal-Wallis test

Independence – groups are independent

dependence: e.g., observations of the same subjects over time

□ if groups are not independent, ANOVA is not appropriate, use other methods

Equality of variances – groups sampled from populations with the same variance
 sometimes called homogeneity of variances, or homoscedasticity
 / hoʊmoʊskəˈdæstɪsity/

□ if variances are not equal, use Welch's approximated test

ANOVA and normality

- My recommendation: do not perform normality test before ANOVA
- Transform data if possible
- Normality test (e.g. Shapiro-Wilk test)

underpowered for small samples (many false negatives)

oversensitive for large samples (many false positives)

nothing in nature is exactly normal!

ANOVA is very robust to non-normality

- □ Glass, G.V., P.D. Peckham, and J.R. Sanders. 1972. Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. *Rev. Educ. Res.* **42**: 237-288.
- Harwell, M.R., E.N. Rubinstein, W.S. Hayes, and C.C. Olds. 1992. Summarizing Monte Carlo results in methodological research: the one- and two-factor fixed effects ANOVA cases. *J. Educ. Stat.* 17: 315-339.
- Lix, L.M., J.C. Keselman, and H.J. Keselman. 1996. Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. *Rev. Educ. Res.* 66: 579-619.

Test to compare variances

- Null hypothesis: samples come from populations with equal variances
- $H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$
- Like ANOVA, except data x_{gi} are replaced by residuals R_{gi}:

$$R_{gi} = |x_{gi} - \bar{x}_g| - \text{Levene's test}$$

$$R_{gi} = |x_{gi} - \tilde{x}_g| - \text{Brown-Forsythe test}$$
median

/ mean

Test statistic:

$$W = \frac{MS_B}{MS_W}$$

Test to compare variances

 Null hypothesis: samples come from populations with equal variances

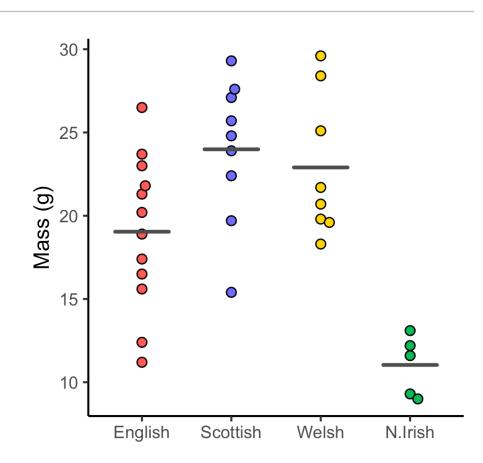
•
$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$$

Test statistic:

$$W = \frac{MS_B}{MS_W}$$

 $MS_B = 6.40 \text{ g}^2$ $MS_W = 6.89 \text{ g}^2$ W = 0.930

p = 0.44



What if variances are not equal?

- B. L. Welch developed an approximated test
- Welch, B.L. (1951), "On the comparison of several mean values: an alternative approach", *Biometrika*, **38**, 330–336
- Skip the details...
- Mice data

	F	ν_1	ν_2	p
ANOVA	11.89	3	30	2.7×10 ⁻⁵
Welch's test	28.95	3	15.96	10-6

Equality of variances in R

Brown-Forsythe test for equality of variances

- > library(lawstat)
- > levene.test(mice\$Mass, mice\$Country)

modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median

```
data: mice$Mass
Test Statistic = 0.92948, p-value = 0.4386
```

```
# Welch's test for unequal variances
> oneway.test(Mass ~ Country, mice, var.equal=FALSE)
```

One-way analysis of means (not assuming equal variances)

```
data: mass and country F = 28.95, num df = 3.00, denom df = 15.96, p-value = 1.084e-06
```

Post-hoc analysis: Tukey's test

- A multiple t-test
- Finds differences and p-values for each pair of categories
- Post-hoc test, you need ANOVA first
- Skip the details...

	Scottish	Welsh	N.Irish
Welsh	- 1.1 0.95		
N.Irish	- 12.9 0.00003*	- 11.9 0.0001*	
English	- 4.9 0.05	- 3.9 0.20	8.0 0.006*

Post-hoc test in R

Tukey's Honest Significant Differences

```
> mice.av <- aov(mice.lm)</pre>
```

```
> TukeyHSD(mice.av)
```

Tukey multiple comparisons of means 95% family-wise confidence level

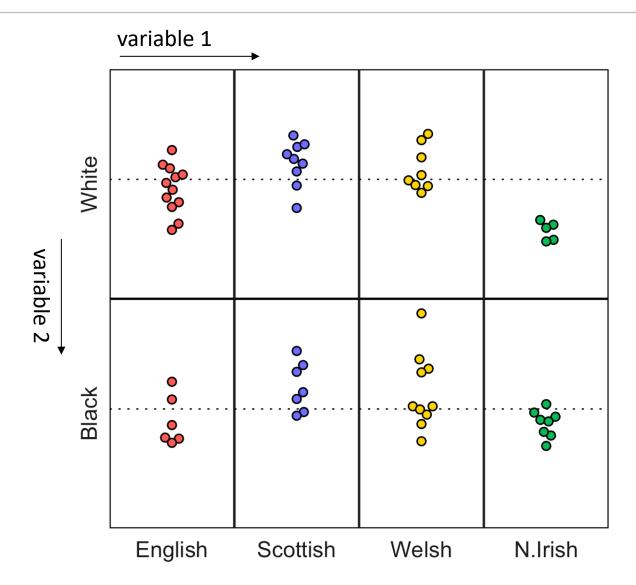
```
Fit: aov(formula = mice.lm)
```

\$Country

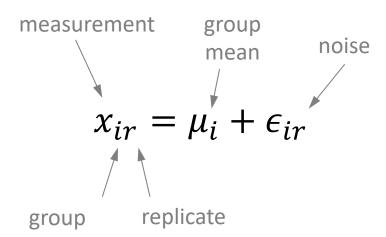
	diff	lwr	upr	p adj
N.Irish-English	-8.001667	-14.04998948	-1.953344	0.0059422
Scottish-English	4.947222	-0.06331043	9.957755	0.0539580
Welsh-English	3.858333	-1.32806069	9.044727	0.2023039
Scottish-N.Irish	12.948889	6.61101070	19.286767	0.0000277
Welsh-N.Irish	11.860000	5.38219594	18.337804	0.0001394
Welsh-Scottish	-1.088889	-6.61022696	4.432449	0.9494897

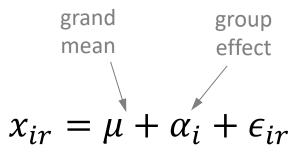
Two-way ANOVA

Two variables



ANOVA as a linear model (one-way)





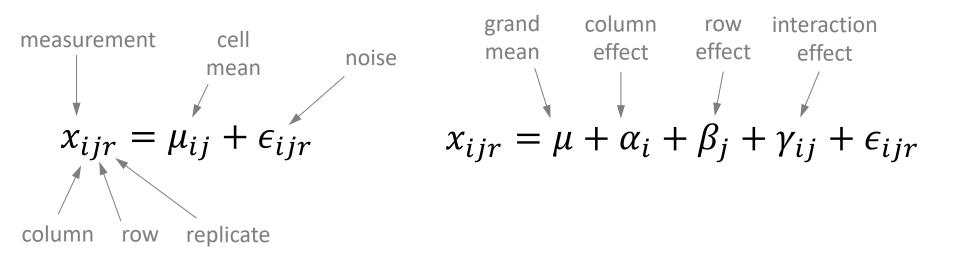
null hypothesis

$$\mathsf{H}_0: \mu_1 = \mu_2 = \dots = \mu_k$$

null hypothesis

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$
$$\forall i: \alpha_i = 0$$

ANOVA as a linear model (two-way)



Column means are equal: H_0^{col} : $\forall i$: $\alpha_i = 0$

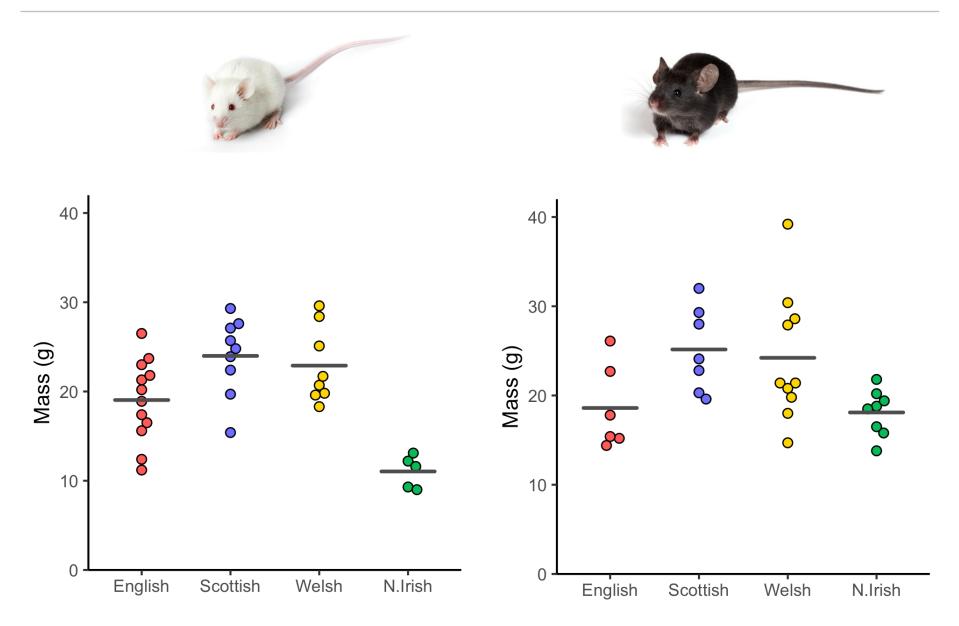
Row means are equal:

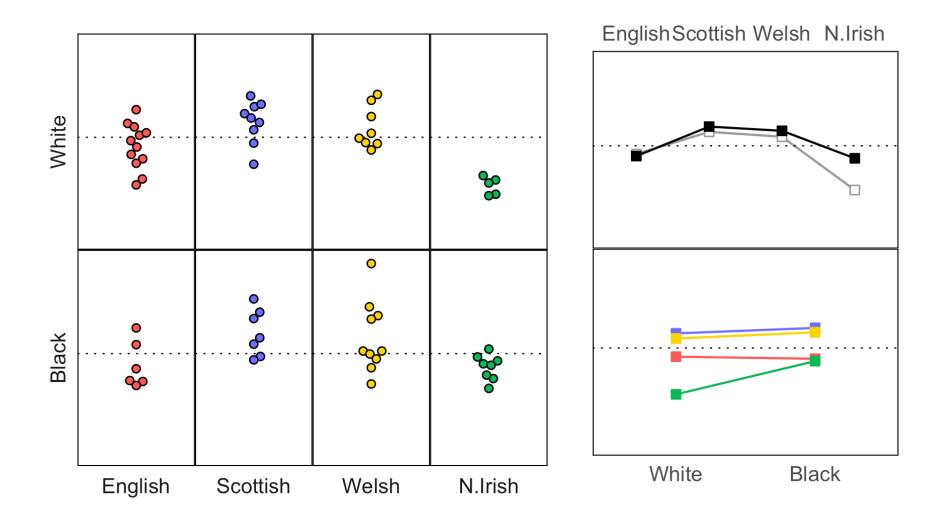
 $\mathrm{H}_{0}^{\mathrm{row}}: \forall j: \beta_{j} = 0$

There is no interaction between rows and columns:

 $H_0^{\text{int}}: \forall i, j: \gamma_{ij} = 0$

More mice!





How to do it in R?

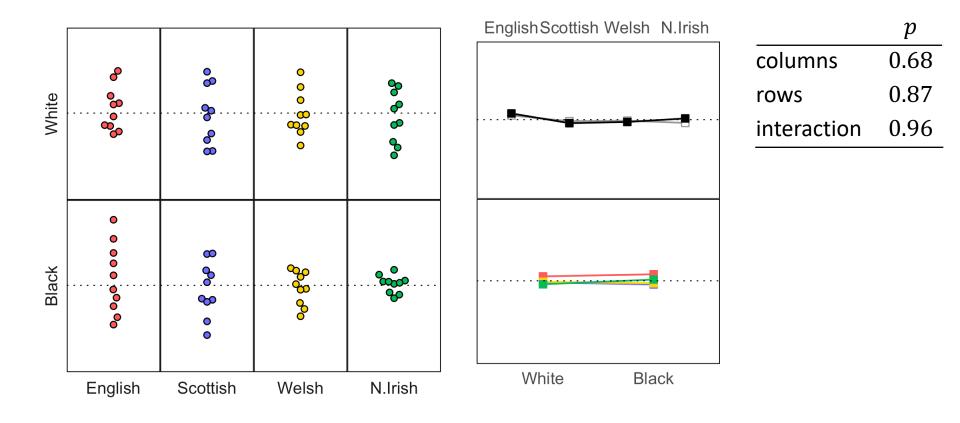
```
# 2-way ANOVA
> mice <- read.table("http://tiny.cc/mice_2way", header=TRUE)
> mice.lm <- lm(Mass ~ Country + Colour + Country:Colour, data=mice)
> anova(mice.lm)
Analysis of Variance Table
```

Response:						
Mass	Df	Sum Sq M	Mean Sq F	= value	Pr(>F)	
Country	3	809.68	269.893	11.9366	3.598e-06	***
Colour	1	59.87	59.873	2.6480	0.1092	
Country:Colour	3	107.39	35.797	1.5832	0.2034	
Residuals	57	1288.80	22.611			
Signif. codes:	0	'***' 0	.001 '**'	' 0.01''	·' 0.05'.'	0.1 '' 1>

Null hypotheses: all three true

•
$$x_{ijr} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijr}$$

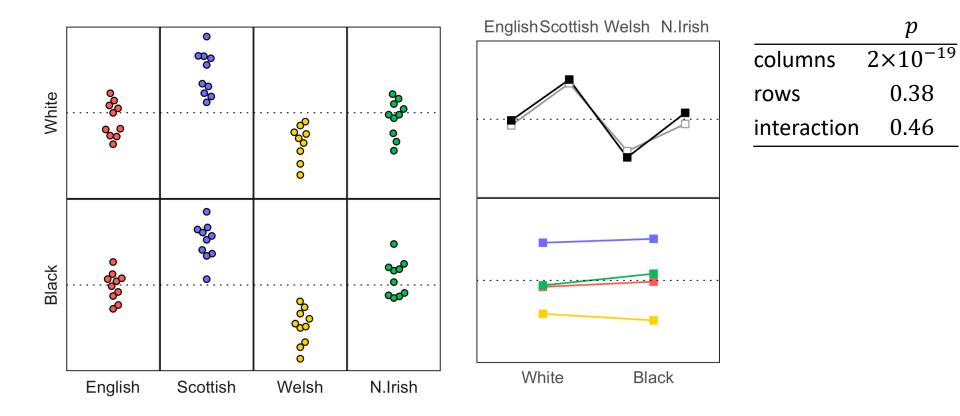
• $\mathbf{A} = (0 \ 0 \ 0 \ 0), \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Gamma} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$



Null hypotheses: columns not equal

•
$$x_{ijr} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijr}$$

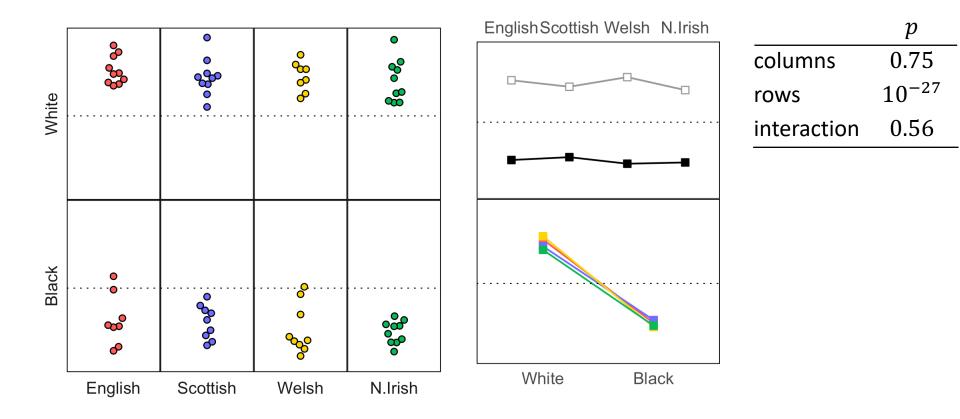
• $\mathbf{A} = (0 \ 10 \ -10 \ 0), \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Gamma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$



Null hypotheses: rows not equal

•
$$x_{ijr} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijr}$$

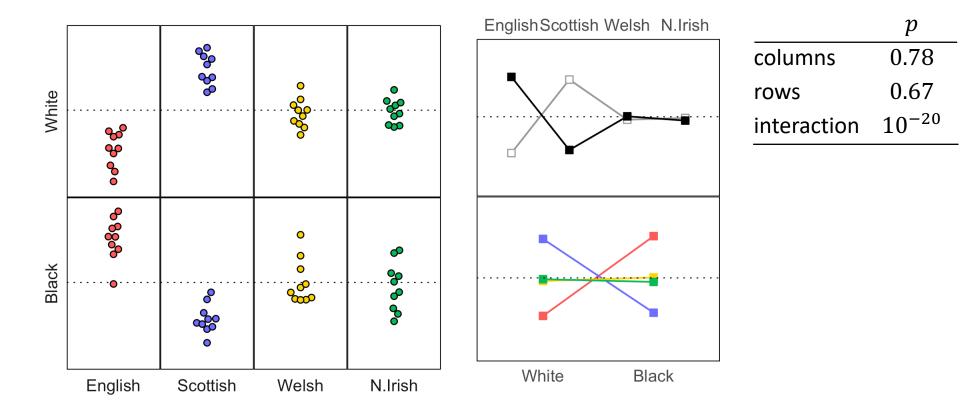
• $\mathbf{A} = (0 \ 0 \ 0), \mathbf{B} = \begin{pmatrix} 10 \\ -10 \end{pmatrix}, \mathbf{\Gamma} = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix}$



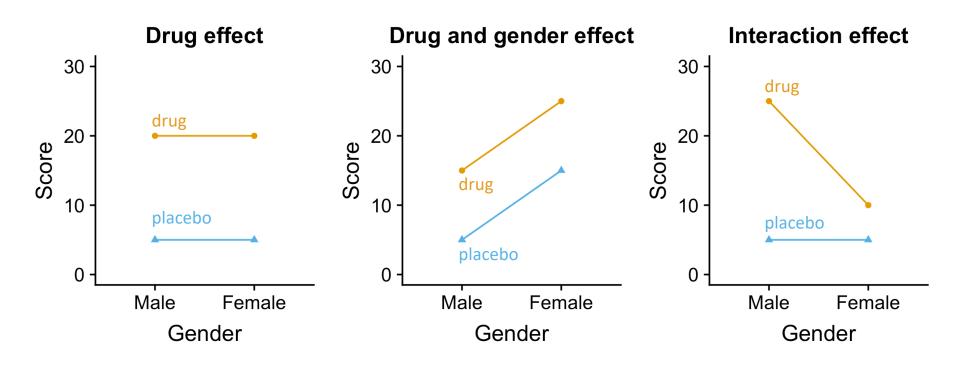
Null hypotheses: interaction

•
$$x_{ijr} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijr}$$

• $\mathbf{A} = (0 \ 0 \ 0), \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Gamma} = \begin{pmatrix} -10 \ 10 \ 0 \ 0 \end{pmatrix}$



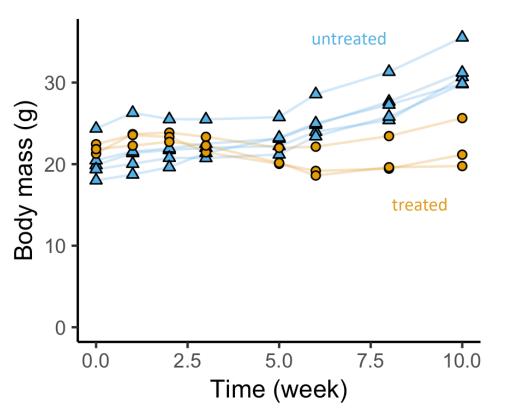
Drug effect: three cases



- male and female patients
- some were given drug, some were given placebo
- score measures response to the drug

- Obesity study in mice
- Two groups:
 - \Box untreated
 - $\hfill\square$ treated with a drug
- Feed them a lot
- Observe body mass over time

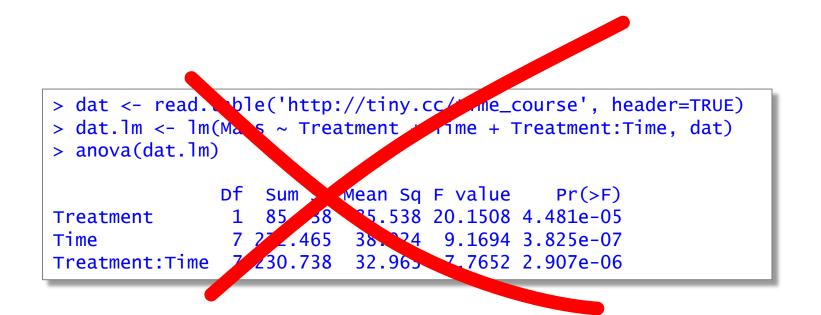
Is there a difference between the two groups?



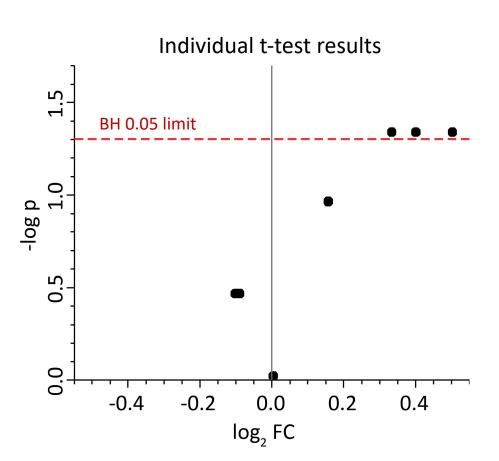
- You might be tempted to do ANOVA
- $p = 5 \times 10^{-5}$

But

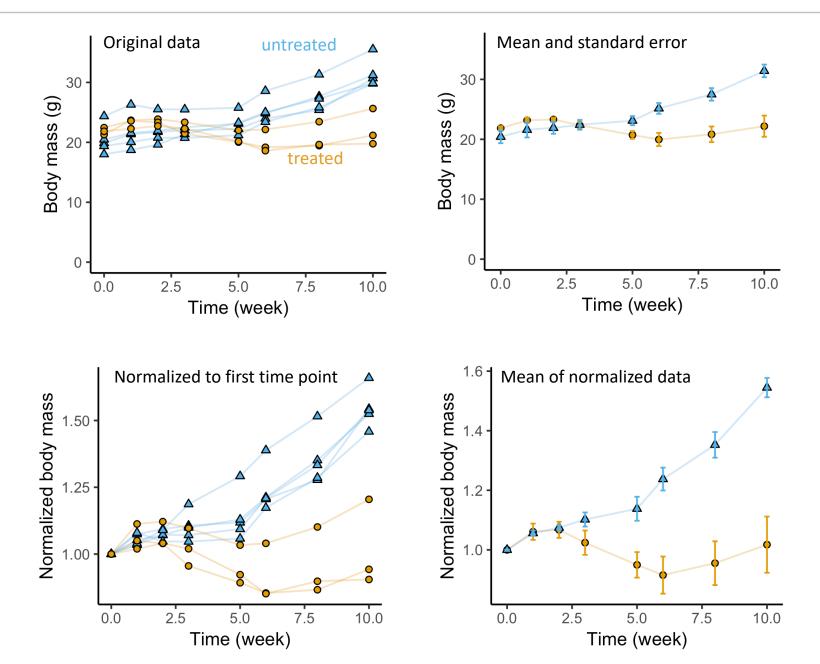
Data are correlated – you follow the same subjects



- What about t-test at each time point?
- Works well!
- Three time points are significantly different
- But: misses point-to-point correlation

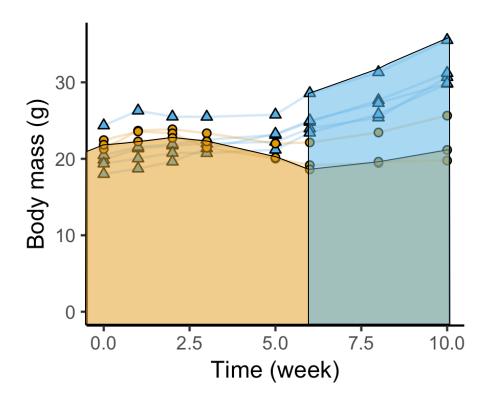


Data transformation

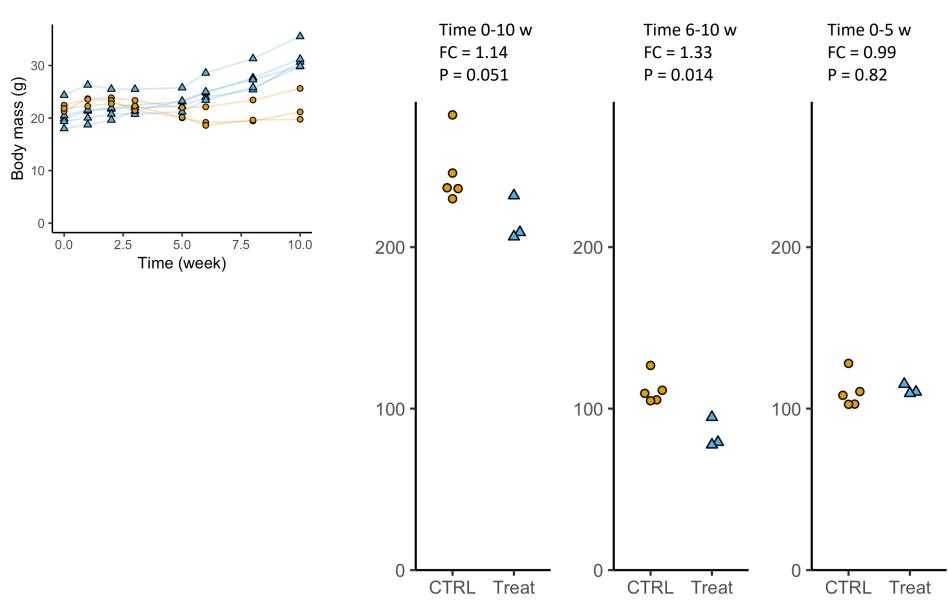


Better approach: build a model

- First: understand your data
- Build a model and reduce time-course curves to just one number
- Do a t-test or similar test on these numbers
- Very simple: area under each curve
- This gives us 4 vs. 3 areas



Compare area under the curve



Chi-square or G-test vs. ANOVA

	WT	KO1	KO2	KO3
G1	50, 54, 48	61, 75, 69	78, 77, 80	43, 34, 49
S	172, 180, 172	175, 168, 166	162, 167, 180	178, 173, 168
G2	55, 50, 63	45, 41, 38	47, 49, 43	59, 50, 45

Fisher's test / Chi-square test / G-test

Experiment outcome: category Table contains counts

	English	Scottish	Welsh	N. Irish
White	19.1, 20, 21	22.3, 21.2, 25.6	18.1, 19.2, 22.7	15.6, 16.7, 15
Black	21.1, 20, 20.5	21.1, 27.5, 23	22.5, 18.5, 19	19.1, 17.7, 13.5
Grey	20, 21, 17	18.6, 20.1, 19.7	15, 18, 22	12, 18.1, 20.3

ANOVA

Experiment outcome: measurement (could be counts)

Table contains measurements

Bacterial antibiotic resistance

- Four strains
- Grown in normal medium and two antibiotic concentrations
- Dilution plating, count colonies

	WT	KO1	KO2	КОЗ
No antibiotic	77, 51, 92	50, 83, 16	70, 111, 78	121, 147, 110
Conc. 1	83, 51, 40	66, 18, 49	95, 109, 52	75, 116, 109
Conc. 2	11, 7, 31	69, 41, 21	85, 51, 60	95, 128, 116

Outcome is measurement, not category This is not a contingency table!

Use ANOVA

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html