
8. t-test

“Aggregate statistics can sometimes mask important information”

Ben Bernanke



Statistical model

Null hypothesis
H0: no effect

All other assumptions

Significance level
𝛼 = 0.05

Reject H0
(at your own risk)

Effect is real
Insufficient evidence

Statistical test against H0
Data

𝑝 < 𝛼?

yes no



One-sample t-test



One-sample t-test

Null hypothesis: the sample 
came from a population with 
mean 𝜇 = 20 g



t-statistic

2𝑆𝐸

𝜇
2𝑆𝐸

𝑡 =
𝑀 − 𝜇
𝑆𝐸

Sample 
mean

Test 
mean

Standard 
error

Generic form

𝑡 =
deviation

standard error

In both cases 𝑡 = 2



Reminder: Student’s t-distribution

n t-statistic is distributed with t-distribution

n Standardized

n One parameter: degrees of freedom, 𝜈

n For large 𝜈 approaches normal distribution

Normal

Student’s t-distribution



Null distribution for the deviation of the mean

Population
of mice

 𝜇 = 20 g, 𝜎 = 5 

Select sample
size 5

𝑍 =
𝑀 − 𝜇
𝜎/ 𝑛

𝑡 =
𝑀 − 𝜇
𝑆𝐷/ 𝑛

Build distributions
of 𝑀, 𝑍 and 𝑡

×10!



Null distribution for the deviation of the mean

𝑁 𝜇, 𝜎 𝑁 0, 1

𝑁 𝜇,
𝜎
𝑛

𝑁 0, 1𝑡 𝑛 − 1



Null distribution for the deviation of the mean

𝑡 =
𝑀 − 𝜇
𝑆𝐷/ 𝑛

=
𝑀 − 𝜇
𝑆𝐸

𝑆𝐷 - sample estimator
(known)

𝑍 =
𝑀 − 𝜇
𝜎/ 𝑛

𝜎 - population parameter
(unknown)



One-sample t-test
n Consider a sample of 𝑛 measurements

o 𝑀 – sample mean
o 𝑆𝐷 – sample standard deviation
o 𝑆𝐸 = 𝑆𝐷/ 𝑛 – sample standard error

n Null hypothesis: the sample comes from a 
population with mean 𝜇

n Test statistic

𝑡 =
𝑀 − 𝜇
𝑆𝐸

n is distributed with t-distribution with 𝑛 − 1 degrees 
of freedom

null distribution
t-distribution with 4 d.o.f.

Null distribution represents all 
random samples when the null 

hypothesis is true



null distribution
t-distribution with 4 d.o.f.

One-sample t-test: example
n H0: 𝜇 = 20 g

n 5 mice with body mass (g):
n 19.5, 26.7, 24.5, 21.9, 22.0

𝑀 = 22.92 g
𝑆𝐷 = 2.76 g
𝑆𝐸 = 1.23 g

𝑡 =
22.92 − 20

1.23 = 2.37
𝜈 = 4

𝑝 = 0.04

Observation

𝑝 = 0.04

> mass <- c(19.5, 26.7, 24.5, 21.9, 22.0)
> M <- mean(mass)
> n <- length(mass)
> SE <- sd(mass) / sqrt(n)
> t <- (M - 20) / SE
[1] 2.36968
> 1 - pt(t, n - 1)
[1] 0.03842385



Sidedness

Observation

𝑝" = 0.04

𝑝# = 0.08

One-sided test
H1: 𝑀 > 𝜇 

Two-sided test
H2: 𝑀 ≠ 𝜇 

𝑝! = 2𝑝"



Normality of data
Original distribution

Distribution of t

Normal
distribution

t-distribution



Statistical test vs confidence interval

Confidence interval 𝑛,𝑀, 𝑆𝐸

𝑛 − 1 d.o.f.

0.95

p = 0.975 𝑡$

𝑡 =
𝑀 − 𝜇
𝑆𝐸

tc <- qt(0.975, df = n - 1)
lower <- M - tc * SE
upper <- M + tc * SE

𝑝
2

𝑝
2

t <- (M - 20) / SE

p <- 2*(1 - pt(t, df = n-1))

𝑡pt(t, n-1)

t-test



Statistical test vs confidence interval

95%𝐶𝐼

𝑝 = 0.05

When 95% CI touches 𝜇, 
then 𝑝 = 0.05

𝜇 = 20 g

> t.test(x5, mu = 20)

One Sample t-test

data:  x5
t = 2.7766, df = 4, p-value = 0.04999

95 percent confidence interval:
20.00035 34.81073
sample estimates:
mean of x 
27.40554 



One-sample t-test: summary

Input sample of 𝑛 measurements
theoretical value 𝜇 (population mean)

Assumptions Observations are random and independent
Data are normally distributed

Usage Examine if the sample is consistent with the population mean

Null hypothesis Sample came from a population with mean 𝜇

Comments Use for differences and ratios (e.g. SILAC)
Works well for non-normal distribution, as long as it is 
symmetric



How to do it in R?
# One-sided t-test

> mass = c(19.5, 26.7, 24.5, 21.9, 22.0)

> t.test(mass, mu = 20, alternative = "greater")

 One Sample t-test

data:  mass

t = 2.3697, df = 4, p-value = 0.03842

alternative hypothesis: true mean is greater than 20

95 percent confidence interval: 20.29307      Inf

sample estimates:

mean of x

     22.92 



Two-sample t-test



Two samples
n Consider two samples (different sizes)

n Are they different?

n Are their means different?

n Do they come from populations with different 
means?

𝑛! = 12
𝑀! = 19.0 g
𝑆𝐷! = 4.6 g

𝑛" = 9
𝑀" = 24.0 g
𝑆𝐷" = 4.3 g



Gedankenexperiment: null distribution

Normal population
𝜇 = 20 g, 𝜎 = 5 g

𝑀% 𝑀&

x 1,000,000

Population
of British mice

 𝜇 = 20 g, 𝜎 = 5 

Select two samples
size 12 and 9

𝑡 =
𝑀% −𝑀&

𝑆𝐸

Build distribution
of 𝑡



Null distribution
n Gedankenexperiment

n Test statistic

𝑡 =
𝑀" −𝑀#

𝑆𝐸

is distributed with t-distribution with 𝜈 degrees of 
freedom

Null distribution represents all 
random samples when the null 

hypothesis is true



Null distribution
n Gedankenexperiment

n Test statistic

𝑡 =
𝑀" −𝑀#

𝑆𝐸

is distributed with t-distribution with 𝜈 degrees of 
freedom

Null distribution represents all 
random samples when the null 

hypothesis is true

Theoretical
t-distribution

Generic form

𝑡 =
deviation

standard error



Two-sample t-test
n Two samples of size 𝑛" and 𝑛#

n Null hypothesis: both samples come from populations of 
the same mean

n H0: 𝜇" = 𝜇#

n Find 𝑀", 𝑀# and 𝑆𝐸

n Test statistic

𝑡 =
𝑀" −𝑀#

𝑆𝐸

is distributed with t-distribution with 𝜈 degrees of freedom

n How do we find 𝑺𝑬 and 𝝂 from two samples?

𝑛! = 12
𝑀! = 19.0 g
𝑆𝐷! = 4.6 g

𝑛" = 9
𝑀" = 24.0 g
𝑆𝐷" = 4.3 g



Case 1: equal variances – pool data together
n Assume that both distributions have the same 

variance (or standard deviation)

n Use pooled variance estimator:

𝑆𝐷",## =
𝑛" − 1 𝑆𝐷"# + 𝑛# − 1 𝑆𝐷##

𝑛" + 𝑛# − 2

n And then the standard error and the number of 
degrees of freedom are

𝑆𝐸 = 𝑆𝐷",#
1
𝑛"
+
1
𝑛#

𝜈 = 𝑛" + 𝑛# − 2

In case of equal samples sizes, 
𝑛" = 𝑛# = 𝑛, these equations 
simplify:

𝑆𝐷",## =
1
2 𝑆𝐷"# + 𝑆𝐷##

𝑆𝐸 =
𝑆𝐷",#
𝑛

𝜈 = 2𝑛 − 2



Case 1: equal variances, example

𝑆𝐷",! = 4.49 g

𝑆𝐸 = 1.98 g

𝜈 = 19

𝑡 =
23.99 − 19.04

1.98
= 2.499

𝑝 = 0.011 (one-sided)

𝑝 = 0.022 (two-sided)

𝑛$ = 12
𝑀$ = 19.04 g
𝑆𝐷$ = 4.61 g

𝑛% = 9
𝑀% = 23.99 g
𝑆𝐷% = 4.32 g

𝑝 = 0.011

t-distribution

> 1 - pt(2.499, 19)
[1] 0.01089314



Case 2: unequal variances - approximate
n Assume that distributions have different variances
n Welch’s t-test

n Find individual standard errors (squared):

𝑆𝐸"# =
𝑆𝐷"#

𝑛"
𝑆𝐸## =

𝑆𝐷##

𝑛#

n Find the common standard error:

𝑆𝐸 = 𝑆𝐸"# + 𝑆𝐸##

n Number of degrees of freedom

𝜈 ≈
𝑆𝐸"# + 𝑆𝐸## #

𝑆𝐸"(
𝑛" − 1

+ 𝑆𝐸#(
𝑛# − 1



Case 2: unequal variances, example

𝑆𝐸$! = 1.77 g!

𝑆𝐸%! = 2.07 g!

𝑆𝐸 = 1.96 g

𝜈 = 18.0

𝑡 =
23.99 − 19.04

1.96
= 2.524

𝑝 = 0.011 (one-sided)

𝑝 = 0.021 (two-sided)

𝑝 = 0.011

t-distribution

> 1 - pt(2.524, 18)
[1] 0.01061046

𝑛$ = 12
𝑀$ = 19.04 g
𝑆𝐷$ = 4.61 g

𝑛% = 9
𝑀% = 23.99 g
𝑆𝐷% = 4.32 g



What if variances are not equal?
n Say, our samples come from two populations:

o English: 𝜇 = 20 g, 𝜎 = 5 g
o Scottish: 𝜇 = 20 g, 𝜎 = 2.5 g

n ‘Equal variances’ t-statistic does not represent the 
null hypothesis

n Unless you are certain that the variances are equal, 
use the Welch’s test

t-distribution

simulation



P-values vs. effect size

𝑛 = 8
Δ𝑀 = 6.3 g
𝑝 = 0.02

𝑛 = 100
Δ𝑀 = 1.8 g
𝑝 = 0.02



P-value is not a 
measure of 
biological 
relevance



Overlapping 95% confidence intervals

If 95% CI don’t overlap, a two-sample t-test is highly significant



Two-sample t test: summary

Input Two samples of 𝑛" and 𝑛# measurements

Assumptions Observations are random and independent (no before/after 
data)
Data are normally distributed

Usage Compare sample means

Null hypothesis Samples came from populations with the same means

Comments Works well for non-normal distribution, as long as it is 
symmetric
Two versions: equal and unequal variances; if unsure, use the 
unequal variance test



How to do it in R?
> English <- c(16.5, 21.3, 12.4, 11.2, 23.7, 20.2, 17.4, 23, 15.6, 26.5, 21.8, 18.9)

> Scottish <- c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)

# One-sided t-test, equal variances

> t.test(Scottish, English, var.equal = TRUE, alternative = "greater")

 Two Sample t-test

data:  Scottish and English

t = 2.4993, df = 19, p-value = 0.01089

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

 1.524438      Inf

sample estimates:

mean of x mean of y 

 23.98889  19.04167

# One-sided t-test, unequal variances

> t.test(Scottish, English, var.equal = FALSE, alternative = "greater")

 Welch Two Sample t-test

data:  Scottish and English

t = 2.5238, df = 17.969, p-value = 0.01062



Paired t-test



Paired t-test
n Samples are paired
n For example: mouse weight before and after 

obesity treatment

n Null hypothesis: there is no difference between 
before and after

Before: 21.4 20.2 23.5 17.5 18.6 17.0 18.9 19.2

After: 22.6 20.9 23.8 18.0 18.4 17.9 19.3 19.1



Paired t-test
n Find the differences:

∆)= 𝑥) − 𝑦)

then

𝑀∆ - mean
𝑆𝐷∆ - standard deviation
𝑆𝐸∆ = 𝑆𝐷∆/ 𝑛 - standard error

n The test statistic is

𝑡 =
𝑀∆

𝑆𝐸∆

n t-distribution with 𝑛 − 1 degrees of freedom

One sample t-test 
against 𝜇 = 0Paired test



Paired t-test

Paired test
𝑀∆ = 0.28 g
𝑆𝐸∆ = 0.17 g
𝑡 = 2.75
𝑝 = 0.014

Non-paired t-test (Welch)
𝑀+,-./ −𝑀0.,1/. = 0.46 g
𝑆𝐸 = 1.08 g
𝑡 = 0.426
𝑝 = 0.34



How to do it in R?
# Paired t-test

> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)

> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)

> t.test(after, before, paired = TRUE, alternative = "greater")

 Paired t-test

data:  after and before

t = 2.7545, df = 7, p-value = 0.01416

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

 0.1443915       Inf

sample estimates:

mean of the differences 

                 0.4625

> t.test(after - before, mu = 0, alternative = "greater")

 One Sample t-test

data:  after - before

t = 2.7545, df = 7, p-value = 0.01416



F-test



Variance
n One sample of size 𝑛
n Sample variance

𝑆𝐷23"# =
1

𝑛 − 1L
)

𝑥) −𝑀 #

n Generalized variance: mean square

𝑀𝑆 =
𝑆𝑆
𝜈

n where
o 𝑆𝑆 - sum of squared residuals
o 𝜈 - number of degrees of freedom

Sample mean

Residual



Comparison of variance
n Consider two samples

o English mice, 𝑛% = 12
o Scottish mice 𝑛& = 9

n We want to test if they come from the populations 
with the same variance, 𝜎#

n Null hypothesis: 𝜎"# = 𝜎##

n We need a test statistic with known distribution

𝑛! = 12
𝑆𝐷!# = 21 g2

𝑛" = 9
𝑆𝐷"# = 19 g2



Gedankenexperiment

null distribution

Null distribution represents all 
random samples when the null 

hypothesis is true

Population
of British mice

 𝜇 = 20 g, 𝜎 = 5 

Select two samples
size 12 and 9

𝐹 =
𝑆𝐷%#

𝑆𝐷&#

Build distribution
of 𝐹



Test to compare two variances
n Consider two samples, sized 𝑛" and 𝑛#

n Null hypothesis: they come from distributions with 
the same variance

n 𝐻4: 𝜎"# = 𝜎##

n Test statistic:

𝐹 =
𝑆𝐷"#

𝑆𝐷##

is distributed with F-distribution with 𝑛" − 1 and 
𝑛# − 1 degrees of freedom

F-distribution, 𝜈" = 11, 𝜈# = 8

Null distribution represents all 
random samples when the null 

hypothesis is true



F-test
n English mice: 𝑆𝐷% = 4.61 g, 𝑛% = 12
n Scottish mice: 𝑆𝐷& = 4.32 g, 𝑛% = 9

n Null hypothesis: they come from distributions with 
the same variance

n Test statistic:

𝐹 =
4.61#

4.32# = 1.139

𝜈% = 11
𝜈& = 8

𝑝 = 0.44

Observation

𝑝 = 0.44

F-distribution, 𝜈" = 11, 𝜈# = 8

> 1 - pf(1.139, 11, 8)
[1] 0.4375845



Two-sample variance test (F-test): summary

Input two samples of 𝑛" and 𝑛# measurements

Usage compare sample variances

Null hypothesis samples came from populations with the same variance

Comments requires normality of data
right now, it might look pointless, but is necessary in ANOVA. 
Very important test!



How to do it in R?
# Two-sample variance test
> var.test(English, Scottish, alternative = "greater")

 F test to compare two variances

data:  English and Scottish
F = 1.1389, num df = 11, denom df = 8, p-value = 0.4376
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
 0.3437867       Inf
sample estimates:
ratio of variances 
          1.138948



Slides available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


