8. t-test

“Aggregate statistics can sometimes mask important information”

Ben Bernanke
Statistical model

Null hypothesis
H_0: no effect

All other assumptions

Significance level
$\alpha = 0.05$

$\textbf{Statistical test against } H_0$

$p < \alpha$?

- yes
 - Reject H_0
 - (at your own risk)
 - Effect is real

- no
 - Insufficient evidence
One-sample t-test
One-sample t-test

Null hypothesis: the sample came from a population with mean $\mu = 20$ g
t-statistic

\[t = \frac{M - \mu}{SE} \]

Sample mean
Test mean
Standard error

Generic form

\[t = \frac{\text{deviation}}{\text{standard error}} \]

In both cases \(t = 2 \)
Reminder: Student’s t-distribution

- t-statistic is distributed with t-distribution
- Standardized
- One parameter: degrees of freedom, ν
- For large ν approaches normal distribution

![Student’s t-distribution](image)
Null distribution for the deviation of the mean

Population of mice
$\mu = 20\, \text{g}, \sigma = 5$

Select sample size 5

$Z = \frac{M - \mu}{\sigma/\sqrt{n}}$

$t = \frac{M - \mu}{SD/\sqrt{n}}$

Build distributions of M, Z and t
Null distribution for the deviation of the mean
Null distribution for the deviation of the mean

\[Z = \frac{M - \mu}{\sigma / \sqrt{n}} \]

\(\sigma \) - population parameter (unknown)

\[t = \frac{M - \mu}{SD / \sqrt{n}} = \frac{M - \mu}{SE} \]

\(SD \) - sample estimator (known)
One-sample t-test

- Consider a sample of n measurements
 - M – sample mean
 - SD – sample standard deviation
 - $SE = SD/\sqrt{n}$ – sample standard error

- **Null hypothesis**: the sample comes from a population with mean μ

- Test statistic

 $$t = \frac{M - \mu}{SE}$$

- is distributed with t-distribution with $n - 1$ degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

![null distribution](null_distribution.png)

null distribution
t-distribution with 4 d.o.f.
One-sample t-test: example

- $H_0: \mu = 20$ g
- 5 mice with body mass (g):
 - 19.5, 26.7, 24.5, 21.9, 22.0

\[
M = 22.92 \text{ g} \\
SD = 2.76 \text{ g} \\
SE = 1.23 \text{ g}
\]

\[
t = \frac{22.92 - 20}{1.23} = 2.37 \\
\nu = 4
\]

$p = 0.04$

```r
> mass <- c(19.5, 26.7, 24.5, 21.9, 22.0)
> M <- mean(mass)
> n <- length(mass)
> SE <- sd(mass) / sqrt(n)
> t <- (M - 20) / SE
> [1] 2.36968
> 1 - pt(t, n - 1)
> [1] 0.03842385
```
Sidedness

One-sided test
$H_1: M > \mu$

Two-sided test
$H_2: M \neq \mu$

$p_1 = 0.04$

$p_2 = 2p_1 = 0.08$

$p_2 = 2p_1$
Normality of data

Original distribution

Distribution of t
Statistical test vs confidence interval

Confidence interval

\[n, M, SE \]

\[n - 1 \text{ d.o.f.} \]

\[t = \frac{M - \mu}{SE} \]

\[tc <- qt(0.975, df = n - 1) \]

\[\text{lower} <- M - tc \times SE \]

\[\text{upper} <- M + tc \times SE \]

t-test

\[t <- (M - 20) / SE \]

\[p <- 2 \times (1 - pt(t, df = n-1)) \]
Statistical test vs confidence interval

When 95% CI touches μ, then $p = 0.05$

```r
> t.test(x5, mu = 20)

One Sample t-test

data:  x5
t = 2.7766, df = 4, p-value = 0.04999
95 percent confidence interval:  
20.00035 34.81073
sample estimates:  
mean of x 27.40554
```
One-sample t-test: summary

<table>
<thead>
<tr>
<th>Input</th>
<th>sample of n measurements theoretical value μ (population mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>Observations are random and independent</td>
</tr>
<tr>
<td></td>
<td>Data are normally distributed</td>
</tr>
<tr>
<td>Usage</td>
<td>Examine if the sample is consistent with the population mean</td>
</tr>
<tr>
<td>Null hypothesis</td>
<td>Sample came from a population with mean μ</td>
</tr>
<tr>
<td>Comments</td>
<td>Use for differences and ratios (e.g. SILAC)</td>
</tr>
<tr>
<td></td>
<td>Works well for non-normal distribution, as long as it is symmetric</td>
</tr>
</tbody>
</table>
How to do it in R?

One-sided t-test

```r
> mass = c(19.5, 26.7, 24.5, 21.9, 22.0)
> t.test(mass, mu = 20, alternative = "greater")
```

```r
One Sample t-test

data:  mass
t = 2.3697, df = 4, p-value = 0.03842
alternative hypothesis: true mean is greater than 20
95 percent confidence interval: 20.29307 Inf
sample estimates:
mean of x
22.92
```
Two-sample t-test
Consider two samples (different sizes)

Are they different?

Are their means different?

Do they come from populations with different means?

\[n_E = 12 \]
\[M_E = 19.0 \text{ g} \]
\[SD_E = 4.6 \text{ g} \]
\[n_S = 9 \]
\[M_S = 24.0 \text{ g} \]
\[SD_S = 4.3 \text{ g} \]
Gedankenexperiment: null distribution

Population of British mice
\[\mu = 20 \, \text{g}, \, \sigma = 5 \, \text{g} \]

Select two samples size 12 and 9

\[t = \frac{M_E - M_S}{SE} \]

Build distribution of \(t \)

Normal population
\[\mu = 20 \, \text{g}, \, \sigma = 5 \, \text{g} \]

Population of British mice
\[\mu = 20 \, \text{g}, \, \sigma = 5 \, \text{g} \]

Select two samples size 12 and 9

\[t = \frac{M_E - M_S}{SE} \]

Build distribution of \(t \)

Normal population
\[\mu = 20 \, \text{g}, \, \sigma = 5 \, \text{g} \]
Null distribution

- *Gedankenexperiment*

- Test statistic

\[t = \frac{M_1 - M_2}{SE} \]

is distributed with t-distribution with \(\nu \) degrees of freedom

Null distribution represents all random samples when the null hypothesis is true.
Null distribution

- Gedankenexperiment
- Test statistic

\[t = \frac{M_1 - M_2}{SE} \]

is distributed with t-distribution with \(\nu \) degrees of freedom

Generic form

\[t = \frac{\text{deviation}}{\text{standard error}} \]

Null distribution represents all random samples when the null hypothesis is true
Two-sample t-test

- Two samples of size n_1 and n_2
- Null hypothesis: both samples come from populations of the same mean
 - $H_0: \mu_1 = \mu_2$
- Find M_1, M_2 and SE
- Test statistic

 \[t = \frac{M_1 - M_2}{SE} \]

 is distributed with t-distribution with ν degrees of freedom

- How do we find SE and ν from two samples?

- Sample data:
 - English: $n_E = 12$, $M_E = 19.0$ g, $SD_E = 4.6$ g
 - Scottish: $n_S = 9$, $M_S = 24.0$ g, $SD_S = 4.3$ g
Case 1: equal variances – pool data together

- Assume that both distributions have the same variance (or standard deviation)

- Use *pooled* variance estimator:

 $$SD_{1,2}^2 = \frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2}$$

- And then the standard error and the number of degrees of freedom are

 $$SE = SD_{1,2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

 $$\nu = n_1 + n_2 - 2$$
Case 1: equal variances, example

\[
\begin{align*}
 n_E &= 12 \\
 M_E &= 19.04 \text{ g} \\
 SD_E &= 4.61 \text{ g} \\
 n_S &= 9 \\
 M_S &= 23.99 \text{ g} \\
 SD_S &= 4.32 \text{ g}
\end{align*}
\]

\[SD_{1,2} = 4.49 \text{ g}\]

\[SE = 1.98 \text{ g}\]

\[v = 19\]

\[t = \frac{23.99 - 19.04}{1.98} = 2.499\]

\[p = 0.011 \text{ (one-sided)}\]

\[p = 0.022 \text{ (two-sided)}\]

\[> 1 - \text{pt}(2.499, 19)\]

[1] 0.01089314
Case 2: unequal variances - approximate

- Assume that distributions have different variances
- Welch’s t-test

- Find individual standard errors (squared):
 \[SE_1^2 = \frac{SD_1^2}{n_1} \quad SE_2^2 = \frac{SD_2^2}{n_2} \]

- Find the common standard error:
 \[SE = \sqrt{SE_1^2 + SE_2^2} \]

- Number of degrees of freedom
 \[\nu \approx \frac{(SE_1^2 + SE_2^2)^2}{\frac{SE_1^4}{n_1 - 1} + \frac{SE_2^4}{n_2 - 1}} \]
Case 2: unequal variances, example

\[n_E = 12 \quad M_E = 19.04 \text{ g} \quad SD_E = 4.61 \text{ g} \]
\[n_S = 9 \quad M_S = 23.99 \text{ g} \quad SD_S = 4.32 \text{ g} \]

\[SE_E^2 = 1.77 \text{ g}^2 \]
\[SE_S^2 = 2.07 \text{ g}^2 \]
\[SE = 1.96 \text{ g} \]
\[v = 18.0 \]
\[t = \frac{23.99 - 19.04}{1.96} = 2.524 \]

\[p = 0.011 \text{ (one-sided)} \]
\[p = 0.021 \text{ (two-sided)} \]
What if variances are not equal?

- Say, our samples come from two populations:
 - English: $\mu = 20\,\text{g}, \quad \sigma = 5\,\text{g}$
 - Scottish: $\mu = 20\,\text{g}, \quad \sigma = 2.5\,\text{g}$

- ‘Equal variances’ t-statistic does not represent the null hypothesis

- Unless you are certain that the variances are equal, use the Welch’s test
P-values vs. effect size

\[n = 8 \]
\[\Delta M = 6.3 \text{ g} \]
\[p = 0.02 \]

\[n = 100 \]
\[\Delta M = 1.8 \text{ g} \]
\[p = 0.02 \]
P-value is not a measure of biological relevance
Overlapping 95% confidence intervals

If 95% CI don’t overlap, a two-sample t-test is highly significant
Two-sample t test: summary

<table>
<thead>
<tr>
<th>Input</th>
<th>Two samples of n_1 and n_2 measurements</th>
</tr>
</thead>
</table>
| **Assumptions** | Observations are random and independent (no before/after data)
 | Data are normally distributed |
| **Usage** | Compare sample means |
| **Null hypothesis** | Samples came from populations with the same means |
| **Comments** | Works well for non-normal distribution, as long as it is symmetric
 | Two versions: equal and unequal variances; if unsure, use the unequal variance test |
How to do it in R?

```r
> Scottish <- c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)

# One-sided t-test, equal variances
> t.test(Scottish, English, var.equal = TRUE, alternative = "greater")

        Welch Two Sample t-test

data:  Scottish and English
  t = 2.5238, df = 17.969, p-value = 0.01062
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
  1.524438        Inf
sample estimates:
mean of x mean of y
     23.98889     19.04167
```

```r
# One-sided t-test, unequal variances
> t.test(Scottish, English, var.equal = FALSE, alternative = "greater")

        Two Sample t-test

data:  Scottish and English
  t = 2.4993, df = 19, p-value = 0.01089
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
  1.524438        Inf
sample estimates:
mean of x mean of y
     23.98889     19.04167
```
Paired t-test
Paired t-test

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: there is no difference between before and after

Before: 21.4 20.2 23.5 17.5 18.6 17.0 18.9 19.2
After: 22.6 20.9 23.8 18.0 18.4 17.9 19.3 19.1
Paired t-test

- Find the differences:
 \[\Delta_i = x_i - y_i \]

- Then
 \[M_\Delta \text{ - mean} \]
 \[SD_\Delta \text{ - standard deviation} \]
 \[SE_\Delta = \frac{SD_\Delta}{\sqrt{n}} \text{ - standard error} \]

- The test statistic is
 \[t = \frac{M_\Delta}{SE_\Delta} \]

- t-distribution with \(n - 1 \) degrees of freedom

Paired test

One sample t-test against \(\mu = 0 \)
Paired t-test

Paired test

\[M_\Delta = 0.28 \text{ g} \]
\[SE_\Delta = 0.17 \text{ g} \]
\[t = 2.75 \]
\[p = 0.014 \]

Non-paired t-test (Welch)

\[M_{\text{after}} - M_{\text{before}} = 0.46 \text{ g} \]
\[SE = 1.08 \text{ g} \]
\[t = 0.426 \]
\[p = 0.34 \]
Paired t-test

```r
> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)
> t.test(after, before, paired = TRUE, alternative = "greater")
```

Paired t-test

data: after and before
t = 2.7545, df = 7, p-value = 0.01416
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 0.1443915 Inf
sample estimates:
mean of the differences
 0.4625

```r
> t.test(after - before, mu = 0, alternative = "greater")
```

One Sample t-test

data: after - before
t = 2.7545, df = 7, p-value = 0.01416
F-test
Variance

- One sample of size n
- Sample variance

$$SD_{n-1}^2 = \frac{1}{n - 1} \sum_i (x_i - M)^2$$

- Generalized variance: mean square

$$MS = \frac{SS}{\nu}$$

- where
 - SS - sum of squared residuals
 - ν - number of degrees of freedom
Comparison of variance

- Consider two samples
 - English mice, \(n_E = 12 \)
 - Scottish mice \(n_S = 9 \)

- We want to test if they come from the populations with the same variance, \(\sigma^2 \)

- Null hypothesis: \(\sigma_1^2 = \sigma_2^2 \)

- We need a test statistic with known distribution
Gedankenexperiment

Population of British mice
$\mu = 20 \text{ g}, \sigma = 5$

Select two samples size 12 and 9

$$F = \frac{SD_E^2}{SD_S^2}$$

Build distribution of F

Null distribution represents all random samples when the null hypothesis is true
Test to compare two variances

- Consider two samples, sized n_1 and n_2

- Null hypothesis: they come from distributions with the same variance

 H_0: $\sigma_1^2 = \sigma_2^2$

- Test statistic:

 $$F = \frac{SD_1^2}{SD_2^2}$$

 is distributed with F-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom

F-distribution, $\nu_1 = 11, \nu_2 = 8$

Null distribution represents all random samples when the null hypothesis is true
F-test

- English mice: $SD_E = 4.61$ g, $n_E = 12$
- Scottish mice: $SD_S = 4.32$ g, $n_E = 9$

- Null hypothesis: they come from distributions with the same variance

- Test statistic:
 \[F = \frac{4.61^2}{4.32^2} = 1.139 \]
 \[\nu_E = 11 \]
 \[\nu_S = 8 \]
 \[p = 0.44 \]

F-distribution, $\nu_1 = 11$, $\nu_2 = 8$

\[> 1 - pf(1.139, 11, 8) \]
\[[1] 0.4375845 \]
Two-sample variance test (F-test): summary

<table>
<thead>
<tr>
<th>Input</th>
<th>two samples of n_1 and n_2 measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>compare sample variances</td>
</tr>
<tr>
<td>Null hypothesis</td>
<td>samples came from populations with the same variance</td>
</tr>
<tr>
<td>Comments</td>
<td>requires normality of data right now, it might look pointless, but is necessary in ANOVA. Very important test!</td>
</tr>
</tbody>
</table>
How to do it in R?

```r
# Two-sample variance test
> var.test(English, Scottish, alternative = "greater")

    F test to compare two variances

data:  English and Scottish
F = 1.1389, num df = 11, denom df = 8, p-value = 0.4376
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
  0.3437867      Inf
sample estimates:
  ratio of variances
          1.138948
```
Slides available at
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html