8. t-test

"Aggregate statistics can sometimes mask important information"

Ben Bernanke

One-sample t-test

One-sample t-test

t-statistic

In both cases t = 2

Reminder: Student's t-distribution

- *t*-statistic is distributed with *t*-distribution
- Standardized
- One parameter: degrees of freedom, v
- For large v approaches normal distribution

Student's t-distribution

Null distribution for the deviation of the mean

Null distribution for the deviation of the mean

Null distribution for the deviation of the mean

One-sample *t*-test

- Consider a sample of n measurements
 - $\square M$ sample mean
 - \square *SD* sample standard deviation
 - $\Box SE = SD/\sqrt{n}$ sample standard error
- Null hypothesis: the sample comes from a population with mean µ
- Test statistic

$$t = \frac{M - \mu}{SE}$$

• is distributed with t-distribution with n-1 degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

One-sample *t*-test: example

■ H₀: $\mu = 20$ g

5 mice with body mass (g):
19.5, 26.7, 24.5, 21.9, 22.0

M = 22.92 gSD = 2.76 gSE = 1.23 g

$$t = \frac{22.92 - 20}{1.23} = 2.37$$

$$\nu = 4$$

p = 0.04

Sidedness

 $p_2 = 2p_1$

Normality of data

Statistical test vs confidence interval

Statistical test vs confidence interval

When 95% CI touches μ , then p = 0.05

> t.test(x5, mu = 20)

One Sample t-test

data: x5
t = 2.7766, df = 4, p-value = 0.04999

95 percent confidence interval: 20.00035 34.81073 sample estimates: mean of x 27.40554

One-sample *t*-test: summary

Input	sample of n measurements theoretical value μ (population mean)
Assumptions	Observations are random and independent Data are normally distributed
Usage	Examine if the sample is consistent with the population mean
Null hypothesis	Sample came from a population with mean μ
Comments	Use for differences and ratios (e.g. SILAC) Works well for non-normal distribution, as long as it is symmetric

How to do it in R?

```
# One-sided t-test
> mass = c(19.5, 26.7, 24.5, 21.9, 22.0)
> t.test(mass, mu = 20, alternative = "greater")
One Sample t-test
```

```
data: mass
t = 2.3697, df = 4, p-value = 0.03842
alternative hypothesis: true mean is greater than 20
95 percent confidence interval: 20.29307 Inf
sample estimates:
mean of x
22.92
```

Two-sample *t*-test

Two samples

- Consider two samples (different sizes)
- Are they different?
- Are their means different?
- Do they come from populations with different means?

Gedankenexperiment: null distribution

Null distribution

- Gedankenexperiment
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with $\boldsymbol{\nu}$ degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

Null distribution

- Gedankenexperiment
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with $\boldsymbol{\nu}$ degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

Two-sample *t*-test

- Two samples of size n₁ and n₂
- Null hypothesis: both samples come from populations of the same mean
- $H_0: \mu_1 = \mu_2$
- Find M_1 , M_2 and SE
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with ν degrees of freedom

How do we find SE and v from two samples?

$$\begin{array}{c|c} n_E = 12 & n_S = 9 \\ M_E = 19.0 \ {\rm g} & SD_E = 4.6 \ {\rm g} & SD_S = 4.3 \ {\rm g} \end{array}$$

Case 1: equal variances – pool data together

- Assume that both distributions have the same variance (or standard deviation)
- Use *pooled* variance estimator:

$$SD_{1,2}^2 = \frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2}$$

 And then the standard error and the number of degrees of freedom are

$$SE = SD_{1,2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
$$\nu = n_1 + n_2 - 2$$

In case of equal samples sizes, $n_1 = n_2 = n$, these equations simplify:

$$SD_{1,2}^2 = \frac{1}{2}(SD_1^2 + SD_2^2)$$
$$SE = \frac{SD_{1,2}}{\sqrt{n}}$$
$$\nu = 2n - 2$$

Case 1: equal variances, example

$$n_{E} = 12$$

$$M_{E} = 19.04 \text{ g}$$

$$SD_{E} = 4.61 \text{ g}$$

$$SD_{E} = 4.61 \text{ g}$$

$$SD_{S} = 4.32 \text{ g}$$

$$SD_{1,2} = 4.49 \text{ g}$$

$$SE = 1.98 \text{ g}$$

$$v = 19$$

$$t = \frac{23.99 - 19.04}{1.98} = 2.499$$

$$p = 0.011 \text{ (one-sided)}$$

$$p = 0.022 \text{ (two-sided)}$$

Case 2: unequal variances - approximate

- Assume that distributions have different variances
- Welch's t-test
- Find individual standard errors (squared):

$$SE_1^2 = \frac{SD_1^2}{n_1}$$
 $SE_2^2 = \frac{SD_2^2}{n_2}$

Find the common standard error:

$$SE = \sqrt{SE_1^2 + SE_2^2}$$

Number of degrees of freedom

$$\nu \approx \frac{(SE_1^2 + SE_2^2)^2}{\frac{SE_1^4}{n_1 - 1} + \frac{SE_2^4}{n_2 - 1}}$$

Case 2: unequal variances, example

$$n_{E} = 12$$

$$M_{E} = 19.04 \text{ g}$$

$$SD_{E} = 4.61 \text{ g}$$

$$SE_{E}^{2} = 1.77 \text{ g}^{2}$$

$$SE_{S}^{2} = 2.07 \text{ g}^{2}$$

$$SE = 1.96 \text{ g}$$

$$v = 18.0$$

$$t = \frac{23.99 - 19.04}{1.96} = 2.524$$

$$p = 0.011 \text{ (one-sided)}$$

$$p = 0.021 \text{ (two-sided)}$$

> 1 - pt(2.524, 18)
[1] 0.01061046

What if variances are not equal?

Say, our samples come from two populations:

□ English: $\mu = 20$ g, $\sigma = 5$ g □ Scottish: $\mu = 20$ g, $\sigma = 2.5$ g

- 'Equal variances' t-statistic does not represent the null hypothesis
- Unless you are certain that the variances are equal, use the Welch's test

P-values vs. effect size

P-value is not a measure of biological relevance

Overlapping 95% confidence intervals

If 95% CI don't overlap, a two-sample t-test is highly significant

Input	Two samples of n_1 and n_2 measurements
Assumptions	Observations are random and independent (no before/after data) Data are normally distributed
Usage	Compare sample means
Null hypothesis	Samples came from populations with the same means
Comments	Works well for non-normal distribution, as long as it is symmetric Two versions: equal and unequal variances; if unsure, use the unequal variance test

How to do it in R?

```
> English <- c(16.5, 21.3, 12.4, 11.2, 23.7, 20.2, 17.4, 23, 15.6, 26.5, 21.8, 18.9)
> Scottish <- c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)
# One-sided t-test, equal variances
> t.test(Scottish, English, var.equal = TRUE, alternative = "greater")
```

Two Sample t-test

```
data: Scottish and English
t = 2.4993, df = 19, p-value = 0.01089
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
1.524438 Inf
sample estimates:
mean of x mean of y
23.98889 19.04167
# One-sided t-test, unequal variances
> t.test(Scottish, English, var.equal = FALSE, alternative = "greater")
```

```
Welch Two Sample t-test
```

```
data: Scottish and English
t = 2.5238, df = 17.969, p-value = 0.01062
```

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: there is no difference between before and after

Before:	21.4	20.2	23.5	17.5	18.6	17.0	18.9	19.2
After:	22.6	20.9	23.8	18.0	18.4	17.9	19.3	19.1

Find the differences:

 $\Delta_i = x_i - y_i$

then

 M_{Δ} - mean SD_{Δ} - standard deviation $SE_{\Delta} = SD_{\Delta}/\sqrt{n}$ - standard error

The test statistic is

$$t=\frac{M_{\Delta}}{SE_{\Delta}}$$

- t-distribution with n-1 degrees of freedom

One sample t-test against $\mu = 0$

Paired test	
$M_\Delta=0.28~{ m g}$	
$SE_{\Delta}=0.17~{ m g}$	
t = 2.75	
p = 0.014	

Non-paired t-test (Welch) $M_{after} - M_{before} = 0.46 \text{ g}$ SE = 1.08 g t = 0.426p = 0.34

How to do it in R?

```
# Paired t-test
> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)</pre>
> t.test(after, before, paired = TRUE, alternative = "greater")
        Paired t-test
data: after and before
t = 2.7545, df = 7, p-value = 0.01416
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 0.1443915
                 Tnf
sample estimates:
mean of the differences
                 0.4625
> t.test(after - before, mu = 0, alternative = "greater")
        One Sample t-test
data: after - before
```

```
t = 2.7545, df = 7, p-value = 0.01416
```

F-test

Variance

- One sample of size *n*
- Sample variance

$$SD_{n-1}^2 = \frac{1}{n-1} \sum_i (x_i - M)^2$$

Generalized variance: mean square

$$MS = \frac{SS}{\nu}$$

where

 \square SS - sum of squared residuals

 $\square \ \nu$ - number of degrees of freedom

Comparison of variance

Consider two samples

□ English mice, $n_E = 12$ □ Scottish mice $n_S = 9$

• We want to test if they come from the populations with the same variance, σ^2

- Null hypothesis: $\sigma_1^2 = \sigma_2^2$
- We need a test statistic with known distribution

Gedankenexperiment

Test to compare two variances

Consider two samples, sized n₁ and n₂

- Null hypothesis: they come from distributions with the same variance
- $H_0: \sigma_1^2 = \sigma_2^2$
- Test statistic:

$$F = \frac{SD_1^2}{SD_2^2}$$

is distributed with F-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom

F-distribution, $v_1 = 11, v_2 = 8$

Null distribution represents all random samples when the null hypothesis is true

F-test

- English mice: $SD_E = 4.61$ g, $n_E = 12$
- Scottish mice: $SD_S = 4.32$ g, $n_E = 9$
- Null hypothesis: they come from distributions with the same variance
- Test statistic:

$$F = \frac{4.61^2}{4.32^2} = 1.139$$

$$\nu_E = 11$$

$$\nu_S = 8$$

$$p = 0.44$$

F-distribution, $v_1 = 11, v_2 = 8$

Two-sample variance test (F-test): summary

Input	two samples of n_1 and n_2 measurements
Usage	compare sample variances
Null hypothesis	samples came from populations with the same variance
Comments	requires normality of data right now, it might look pointless, but is necessary in ANOVA. Very important test!

How to do it in R?

Two-sample variance test

> var.test(English, Scottish, alternative = "greater")

F test to compare two variances

```
data: English and Scottish
F = 1.1389, num df = 11, denom df = 8, p-value = 0.4376
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
    0.3437867 Inf
sample estimates:
ratio of variances
    1.138948
```

Slides available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html