8. t-test

"Aggregate statistics can sometimes mask important information"

Ben Bernanke

Statistical testing

One-sample t-test

One-sample t-test

t-statistic

■ Sample $x_1, x_2, ..., x_n$

M - mean

SD - standard deviation

$$SE = SD/\sqrt{n}$$
 - standard error

From these we can find

$$t = \frac{M - \mu}{SE}$$

more generic form:

$$t = \frac{\text{deviation}}{\text{standard error}}$$

Reminder: Student's t-distribution

- t-statistic is distributed with tdistribution
- Standardized
- lacktriangle One parameter: degrees of freedom, u
- For large ν approaches normal distribution

Null distribution for the deviation of the mean

Null distribution for the deviation of the mean

Null distribution for the deviation of the mean

$$Z = \frac{M - \mu}{\sigma / \sqrt{n}}$$

 σ - population parameter (unknown)

Distribution of Z

SD - sample estimator (known)

One-sample t-test

- Consider a sample of n measurements
 - $\square M$ sample mean
 - \square *SD* sample standard deviation
 - $\Box SE = SD/\sqrt{n}$ sample standard error
- Null hypothesis: the sample comes from a population with mean μ
- Test statistic

$$t = \frac{M - \mu}{SE}$$

lacktriangleright is distributed with t-distribution with n-1 degrees of freedom

null distribution t-distribution with 4 d.o.f.

Null distribution represents all random samples when the null hypothesis is true

One-sample t-test: example

■
$$H_0$$
: $\mu = 20 g$

- 5 mice with body mass (g):
- **1**9.5, 26.7, 24.5, 21.9, 22.0

$$M = 22.92 \text{ g}$$

 $SD = 2.76 \text{ g}$
 $SE = 1.23 \text{ g}$

$$t = \frac{22.92 - 20}{1.23} = 2.37$$

$$v = 4$$

$$p = 0.04$$

null distribution t-distribution with 4 d.o.f.


```
> mass <- c(19.5, 26.7, 24.5, 21.9, 22.0)
> M <- mean(mass)
> n <- length(mass)
> SE <- sd(mass) / sqrt(n)
> t <- (M - 20) / SE
[1] 2.36968
> 1 - pt(t, n - 1)
[1] 0.03842385
```

Sidedness

$$p_2 = 2p_1$$

Normality of data

Statistical test vs confidence interval

Confidence interval

$$n-1$$
 d.o.f.

n, M, SE

t-test

$$p \leftarrow 2*(1 - pt(t, df = n-1))$$

Statistical test vs confidence interval


```
When 95% CI touches \mu, then p = 0.05
```

```
> t.test(x5, mu=20)

One Sample t-test

data: x5
t = 2.7766, df = 4, p-value = 0.04999

95 percent confidence interval:
  20.00035 34.81073
sample estimates:
mean of x
  27.40554
```

One-sample *t*-test: summary

Input	sample of n measurements theoretical value μ (population mean)
Assumptions	Observations are random and independent Data are normally distributed
Usage	Examine if the sample is consistent with the population mean
Null hypothesis	Sample came from a population with mean μ
Comments	Use for differences and ratios (e.g. SILAC) Works well for non-normal distribution, as long as it is symmetric

How to do it in R?

Two-sample *t*-test

Two samples

- Consider two samples (different sizes)
- Are they different?
- Are their means different?
- Do they come from populations with different means?

$$n_S = 9$$

 $M_S = 24.0 \text{ g}$
 $SD_S = 4.3 \text{ g}$

Gedankenexperiment: null distribution

Null distribution

- Gedankenexperiment
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with $\boldsymbol{\nu}$ degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

Null distribution

- Gedankenexperiment
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with ν degrees of freedom

Null distribution represents all random samples when the null hypothesis is true

Two-sample t-test

- lacksquare Two samples of size n_1 and n_2
- Null hypothesis: both samples come from populations of the same mean
- \blacksquare H₀: $\mu_1 = \mu_2$
- Find M_1 , M_2 and SE
- Test statistic

$$t = \frac{M_1 - M_2}{SE}$$

is distributed with t-distribution with ν degrees of freedom

How do we find SE from two samples?

$$n_S = 9$$

 $M_S = 24.0 \text{ g}$
 $SD_S = 4.3 \text{ g}$

Case 1: equal variances

 Assume that both distributions have the same variance (or standard deviation)

Use pooled variance estimator:

$$SD_{1,2}^2 = \frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2}$$

 And then the standard error and the number of degrees of freedom are

$$SE = SD_{1,2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$\nu = n_1 + n_2 - 2$$

In case of equal samples sizes, $n_1=n_2=n$, these equations simplify:

$$SD_{1,2}^2 = \frac{1}{2}(SD_1^2 + SD_2^2)$$

$$SE = \frac{SD_{1,2}}{\sqrt{n}}$$

$$v = 2n - 2$$

Case 1: equal variances, example

$$n_E = 12$$

 $M_E = 19.04 \text{ g}$
 $SD_E = 4.61 \text{ g}$

$$n_S = 9$$

 $M_S = 23.99 \text{ g}$
 $SD_S = 4.32 \text{ g}$

$$SD_{1,2} = 4.49 \text{ g}$$

$$SE = 1.98 \, g$$

$$\nu = 19$$

$$t = \frac{23.99 - 19.04}{1.98} = 2.499$$

$$p = 0.011$$
 (one-sided)

$$p = 0.022$$
 (two-sided)

t-distribution

> 1 - pt(2.499, 19) [1] 0.01089314

Case 2: unequal variances

- Assume that distributions have different variances
- Welch's t-test
- Find individual standard errors (squared):

$$SE_1^2 = \frac{SD_1^2}{n_1}$$
 $SE_2^2 = \frac{SD_2^2}{n_2}$

• Find the common standard error:

$$SE = \sqrt{SE_1^2 + SE_2^2}$$

Number of degrees of freedom

$$\nu \approx \frac{(SE_1^2 + SE_2^2)^2}{\frac{SE_1^4}{n_1 - 1} + \frac{SE_2^4}{n_2 - 1}}$$

Case 2: unequal variances, example

$$n_E = 12$$

 $M_E = 19.04 \,\mathrm{g}$
 $SD_E = 4.61 \,\mathrm{g}$

$$n_S = 9$$

 $M_S = 23.99 \text{ g}$
 $SD_S = 4.32 \text{ g}$

$$SE_E^2 = 1.77 \text{ g}^2$$

$$SE_S^2 = 2.07 \text{ g}^2$$

$$SE = 1.96 g$$

$$\nu = 18.0$$

$$t = \frac{23.99 - 19.04}{1.96} = 2.524$$

$$p = 0.011$$
 (one-sided)

$$p = 0.021$$
 (two-sided)

> 1 - pt(2.524, 18) [1] 0.01061046

What if variances are not equal?

- Say, our samples come from two populations:
 - \Box English: $\mu = 20 \, \mathrm{g}$, $\sigma = 5 \, \mathrm{g}$
 - \Box Scottish: $\mu = 20 \text{ g}$, $\sigma = 2.5 \text{ g}$
- 'Equal variance' t-statistic does not represent the null hypothesis
- Unless you are certain that the variances are equal, use the Welch's test

P-values vs. effect size

P-value is not a measure of biological significance

Overlapping 95% confidence intervals

If 95% CI don't overlap, a two-sample t-test is highly significant

Two-sample t test: summary

Input	Two samples of n_1 and n_2 measurements
Assumptions	Observations are random and independent (no before/after data) Data are normally distributed
Usage	Compare sample means
Null hypothesis	Samples came from populations with the same means
Comments	Works well for non-normal distribution, as long as it is symmetric Two versions: equal and unequal variances; if unsure, use the unequal variance test

How to do it in R?

```
> English < c(16.5, 21.3, 12.4, 11.2, 23.7, 20.2, 17.4, 23, 15.6, 26.5, 21.8, 18.9)
> Scottish < c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)
# One-sided t-test, equal variances
> t.test(Scottish, English, var.equal=TRUE, alternative="greater")
        Two Sample t-test
data: Scottish and English
t = 2.4993, df = 19, p-value = 0.01089
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
1.524438
               Tnf
sample estimates:
mean of x mean of y
23.98889 19.04167
# One-sided t-test, unequal variances
> t.test(Scottish, English, var.equal=FALSE, alternative="greater")
        Welch Two Sample t-test
data: Scottish and English
t = 2.5238, df = 17.969, p-value = 0.01062
```

Paired t-test

Paired t-test

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: there is no difference between before and after
- M_{Δ} the mean of the individual differences
- Example: mouse body mass (g)

Before: 21.4 20.2 23.5 17.5 18.6 17.0 18.9 19.2

After: 22.6 20.9 23.8 18.0 18.4 17.9 19.3 19.1

Paired t-test

- Samples are paired
- Find the differences:

$$\Delta_i = x_i - y_i$$

then

 M_{Δ} - mean

 SD_{Δ} - standard deviation

$$SE_{\Delta} = SD_{\Delta}/\sqrt{n}$$
 - standard error

The test statistic is

$$t = \frac{M_{\Delta}}{SE_{\Delta}}$$

• t-distribution with n-1 degrees of freedom

Non-paired t-test (Welch)

$$M_{
m after}-M_{
m before}=0.46~{
m g}$$
 $SE=1.08~{
m g}$ $t=0.426$ $p=0.34$

Paired test

$$M_{\Delta} = 0.28 \text{ g}$$
 $SE_{\Delta} = 0.17 \text{ g}$ $t = 2.75$ $p = 0.014$

How to do it in R?

```
# Paired t-test
> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)
> t.test(after, before, paired=TRUE, alternative="greater")
        Paired t-test
data: after and before
t = 2.7545, df = 7, p-value = 0.01416
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 0.1443915
                 Tnf
sample estimates:
mean of the differences
                 0.4625
```

F-test

Variance

- One sample of size n
- Sample variance

$$SD_{n-1}^2 = \frac{1}{n-1} \sum_{i} (x_i - M)^2$$

Generalized variance: mean square

$$MS = \frac{SS}{v}$$

- where
 - \square SS sum of squared residuals
 - $\square \nu$ number of degrees of freedom

Comparison of variance

- Consider two samples
 - \Box English mice, $n_E=12$
 - \square Scottish mice $n_S = 9$
- We want to test if they come from the populations with the same variance, σ^2

- Null hypothesis: $\sigma_1^2 = \sigma_2^2$
- We need a test statistic with known distribution

$$n_E = 12$$

 $SD_E^2 = 21 \,\mathrm{g}^2$

$$n_S = 9$$

$$SD_S^2 = 19 g^2$$

Gedankenexperiment

null distribution

Null distribution represents all random samples when the null hypothesis is true

Test to compare two variances

- lacksquare Consider two samples, sized n_1 and n_2
- Null hypothesis: they come from distributions with the same variance
- H_0 : $\sigma_1^2 = \sigma_2^2$
- Test statistic:

$$F = \frac{SD_1^2}{SD_2^2}$$

is distributed with F-distribution with n_1-1 and n_2-1 degrees of freedom

Reminder

Test statistic for two-sample t-test:

$$t = \frac{M_1 - M_2}{SE}$$

F-distribution, $v_1 = 11$, $v_2 = 8$

Null distribution represents all random samples when the null hypothesis is true

F-test

- English mice: $SD_E = 4.61 \, \text{g}, \, n_E = 12$
- Scottish mice: $SD_S=4.32$ g, $n_E=9$
- Null hypothesis: they come from distributions with the same variance
- Test statistic:

$$F = \frac{4.61^2}{4.32^2} = 1.139$$

$$\nu_E = 11$$

$$\nu_S = 8$$

$$p = 0.44$$

F-distribution, $v_1 = 11$, $v_2 = 8$

Two-sample variance test (F-test): summary

Input	two samples of n_1 and n_2 measurements
Usage	compare sample variances
Null hypothesis	samples came from populations with the same variance
Comments	requires normality of data right now, it might look pointless, but is necessary in ANOVA. Very important test!

How to do it in R?

```
# Two-sample variance test
> var.test(English, Scottish, alternative="greater")
        F test to compare two variances
      English and Scottish
data:
F = 1.1389, num df = 11, denom df = 8, p-value = 0.4376
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
0.3437867
                 Tnf
sample estimates:
ratio of variances
          1.138948
```

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html