8. t-test

“Aggregate statistics can sometimes mask important information”

Ben Bernanke
Statistical testing

Null hypothesis
\(H_0: \text{no effect} \)

All other assumptions

Significance level
\(\alpha = 0.05 \)

Test statistic \(T_{\text{obs}} \)

Statistical test against \(H_0 \)

Data

\(p \)-value: probability that the observed effect is random

\(p < \alpha \)
Reject \(H_0 \)
Effect is real

\(p \geq \alpha \)
Insufficient evidence
One-sample t-test
One-sample t-test

Null hypothesis: the sample came from a population with mean $\mu = 20$ g
t-statistic

- Sample \(x_1, x_2, \ldots, x_n \)

\[
M - \text{mean} \\
SD - \text{standard deviation} \\
SE = \frac{SD}{\sqrt{n}} - \text{standard error}
\]

- From these we can find

\[
t = \frac{M - \mu}{SE}
\]

- more generic form:

\[
t = \frac{\text{deviation}}{\text{standard error}}
\]
Reminder: Student’s t-distribution

- t-statistic is distributed with t-distribution
- Standardized
- One parameter: degrees of freedom, ν
- For large ν approaches normal distribution
Null distribution for the deviation of the mean

Population of mice
$\mu = 20 \text{ g}, \sigma = 5$

Select sample size 5

$$Z = \frac{M - \mu}{\sigma/\sqrt{n}}$$
$$t = \frac{M - \mu}{SD/\sqrt{n}}$$

Build distributions of M, Z and t
Null distribution for the deviation of the mean

Original distribution

\[N(\mu, \sigma) \]

Distribution of Z

\[N(0, 1) \]

Distribution of M

\[N \left(\mu, \frac{\sigma}{\sqrt{n}} \right) \]

Distribution of t

\[t(n - 1) \]
Null distribution for the deviation of the mean

$Z = \frac{M - \mu}{\sigma/\sqrt{n}}$

σ - population parameter (unknown)

$t = \frac{M - \mu}{SD/\sqrt{n}} = \frac{M - \mu}{SE}$

SD - sample estimator (known)
One-sample t-test

- Consider a sample of n measurements
 - M – sample mean
 - SD – sample standard deviation
 - $SE = SD/\sqrt{n}$ – sample standard error

- Null hypothesis: the sample comes from a population with mean μ

- Test statistic
 $$ t = \frac{M - \mu}{SE} $$

- is distributed with t-distribution with $n - 1$ degrees of freedom

Null distribution represents all random samples when the null hypothesis is true
One-sample t-test: example

- $H_0: \mu = 20$ g
- 5 mice with body mass (g):
 - 19.5, 26.7, 24.5, 21.9, 22.0

\[
M = 22.92 \text{ g} \\
SD = 2.76 \text{ g} \\
SE = 1.23 \text{ g}
\]

\[
t = \frac{22.92 - 20}{1.23} = 2.37
\]

\[\nu = 4\]

$p = 0.04$

```r
> mass <- c(19.5, 26.7, 24.5, 21.9, 22.0)
> M <- mean(mass)
> n <- length(mass)
> SE <- sd(mass) / sqrt(n)
> t <- (M - 20) / SE
> t
[1] 2.36968
> 1 - pt(t, n - 1)
[1] 0.03842385
```
Sidedness

One-sided test

\[H_1: M > \mu \]

Two-sided test

\[H_2: M \neq \mu \]

Observation

\[p_1 = 0.04 \]

\[p_2 = 2p_1 \]

\[p_2 = 0.08 \]
Normality of data

Original distribution

Distribution of t
Statistical test vs confidence interval

Confidence interval

\[n - 1 \text{ d.o.f.} \]

\[p = 0.975 \]

\[t_c \]

\[t = \frac{M - \mu}{SE} \]

\[p = 2 \times (1 - \text{pt}(t, \text{df} = n - 1)) \]

\[\text{tc} \leftarrow \text{qt}(0.975, \text{df} = n - 1) \]
\[\text{lower} \leftarrow M - \text{tc} \times SE \]
\[\text{upper} \leftarrow M + \text{tc} \times SE \]

T-test
When 95% CI touches μ, then $p = 0.05$

```
> t.test(x5, mu=20)

One Sample t-test

data:  x5
t = 2.7766, df = 4, p-value = 0.04999
95 percent confidence interval:
  20.00035 34.81073
sample estimates:
  mean of x
  27.40554
```
One-sample t-test: summary

| Input | sample of n measurements
<table>
<thead>
<tr>
<th></th>
<th>theoretical value μ (population mean)</th>
</tr>
</thead>
</table>
| Assumptions | Observations are random and independent
| | Data are normally distributed |
| Usage | Examine if the sample is consistent with the population mean |
| Null hypothesis | Sample came from a population with mean μ |
| Comments | Use for differences and ratios (e.g. SILAC)
| | Works well for non-normal distribution, as long as it is symmetric |
One-sided t-test

```r
> mass = c(19.5, 26.7, 24.5, 21.9, 22.0)
> t.test(mass, mu=20, alternative="greater")
```

```
One Sample t-test

data:  mass
t = 2.3697, df = 4, p-value = 0.03842
alternative hypothesis: true mean is greater than 20
95 percent confidence interval: 20.29307 Inf
sample estimates:
mean of x
   22.92
```
Two-sample t-test
Two samples

- Consider two samples (different sizes)

- Are they different?

- Are their means different?

- Do they come from populations with different means?

\[n_E = 12 \]
\[M_E = 19.0 \text{ g} \]
\[SD_E = 4.6 \text{ g} \]

\[n_S = 9 \]
\[M_S = 24.0 \text{ g} \]
\[SD_S = 4.3 \text{ g} \]
Gedankenexperiment: null distribution

- **Population of British mice**
 - \(\mu = 20 \text{ g}, \sigma = 5 \text{ g} \)

- **Select two samples size 12 and 9**

 \[
 t = \frac{M_E - M_S}{SE}
 \]

- **Build distribution of \(\Delta M \) and \(t \)**
Null distribution

- *Gedankenexperiment*

- Test statistic

\[t = \frac{M_1 - M_2}{SE} \]

is distributed with t-distribution with \(\nu \) degrees of freedom

Null distribution represents all random samples when the null hypothesis is true
Null distribution

- **Gedankenexperiment**

- Test statistic

\[t = \frac{M_1 - M_2}{SE} \]

is distributed with t-distribution with \(\nu \) degrees of freedom

Null distribution represents all random samples when the null hypothesis is true.
Two-sample t-test

- Two samples of size n_1 and n_2
- Null hypothesis: both samples come from populations of the same mean
 - $H_0: \mu_1 = \mu_2$
- Find M_1, M_2 and SE
- Test statistic
 \[
 t = \frac{M_1 - M_2}{SE}
 \]
 is distributed with t-distribution with ν degrees of freedom
- How do we find SE from two samples?

\[
\begin{array}{|c|c|c|}
\hline
n_E & 12 & n_S = 9 \\
M_E & 19.0 \text{ g} & M_S = 24.0 \text{ g} \\
SD_E & 4.6 \text{ g} & SD_S = 4.3 \text{ g} \\
\hline
\end{array}
\]
Case 1: equal variances

- Assume that both distributions have the same variance (or standard deviation)

- Use pooled variance estimator:

\[SD_{1,2}^2 = \frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2} \]

- And then the standard error and the number of degrees of freedom are

\[SE = SD_{1,2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \]

\[\nu = n_1 + n_2 - 2 \]

In case of equal samples sizes, \(n_1 = n_2 = n \), these equations simplify:

\[SD_{1,2}^2 = \frac{1}{2} (SD_1^2 + SD_2^2) \]

\[SE = \frac{SD_{1,2}}{\sqrt{n}} \]

\[\nu = 2n - 2 \]
Case 1: equal variances, example

\[
\begin{align*}
n_E &= 12 \\
M_E &= 19.04 \text{ g} \\
SD_E &= 4.61 \text{ g} \\
n_S &= 9 \\
M_S &= 23.99 \text{ g} \\
SD_S &= 4.32 \text{ g}
\end{align*}
\]

\[SD_{1,2} = 4.49 \text{ g}\]

\[SE = 1.98 \text{ g}\]

\[\nu = 19\]

\[t = \frac{23.99 - 19.04}{1.98} = 2.499\]

\[p = 0.011 \text{ (one-sided)}\]

\[p = 0.022 \text{ (two-sided)}\]

\[> 1 - pt(2.499, 19)\]

[1] 0.01089314
Case 2: unequal variances

- Assume that distributions have different variances
- Welch’s t-test

- Find individual standard errors (squared):
 \[SE_1^2 = \frac{SD_1^2}{n_1} \quad \text{and} \quad SE_2^2 = \frac{SD_2^2}{n_2} \]

- Find the common standard error:
 \[SE = \sqrt{SE_1^2 + SE_2^2} \]

- Number of degrees of freedom
 \[\nu \approx \frac{(SE_1^2 + SE_2^2)^2}{\frac{SE_1^4}{n_1 - 1} + \frac{SE_2^4}{n_2 - 1}} \]
Case 2: unequal variances, example

\[
\begin{align*}
n_E &= 12 \\
M_E &= 19.04 \text{ g} \\
SD_E &= 4.61 \text{ g} \\
n_S &= 9 \\
M_S &= 23.99 \text{ g} \\
SD_S &= 4.32 \text{ g}
\end{align*}
\]

\[
\begin{align*}
SE_E^2 &= 1.77 \text{ g}^2 \\
SE_S^2 &= 2.07 \text{ g}^2 \\
SE &= 1.96 \text{ g} \\
\nu &= 18.0 \\
t &= \frac{23.99 - 19.04}{1.96} = 2.524
\]

\[
p = 0.011 \text{ (one-sided)}
\]

\[
p = 0.021 \text{ (two-sided)}
\]
What if variances are not equal?

- Say, our samples come from two populations:
 - English: $\mu = 20$ g, $\sigma = 5$ g
 - Scottish: $\mu = 20$ g, $\sigma = 2.5$ g

- ‘Equal variance’ t-statistic does not represent the null hypothesis

- Unless you are certain that the variances are equal, use the Welch’s test
P-values vs. effect size

\[
\begin{align*}
n &= 8 \\
\Delta M &= 6.3 \text{ g} \\
p &= 0.02
\end{align*}
\]

\[
\begin{align*}
n &= 100 \\
\Delta M &= 1.8 \text{ g} \\
p &= 0.02
\end{align*}
\]
P-value is not a measure of biological significance.
Overlapping 95% confidence intervals

If 95% CI don’t overlap, a two-sample t-test is highly significant
Two-sample t test: summary

<table>
<thead>
<tr>
<th>Input</th>
<th>Two samples of n_1 and n_2 measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>Observations are random and independent (no before/after data)</td>
</tr>
<tr>
<td></td>
<td>Data are normally distributed</td>
</tr>
<tr>
<td>Usage</td>
<td>Compare sample means</td>
</tr>
<tr>
<td>Null hypothesis</td>
<td>Samples came from populations with the same means</td>
</tr>
<tr>
<td>Comments</td>
<td>Works well for non-normal distribution, as long as it is symmetric</td>
</tr>
<tr>
<td></td>
<td>Two versions: equal and unequal variances; if unsure, use the unequal variance test</td>
</tr>
</tbody>
</table>
How to do it in R?

```R
> Scottish <- c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)

# One-sided t-test, equal variances
> t.test(Scottish, English, var.equal=TRUE, alternative="greater")

Two Sample t-test

data:  Scottish and English
t = 2.4993, df = 19, p-value = 0.01089
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
  1.524438       Inf
sample estimates:
mean of x mean of y
 23.98889   19.04167

# One-sided t-test, unequal variances
> t.test(Scottish, English, var.equal=FALSE, alternative="greater")

Welch Two Sample t-test

data:  Scottish and English
t = 2.5238, df = 17.969, p-value = 0.01062
```

33
Paired t-test
Paired t-test

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: there is no difference between before and after
- M_Δ - the mean of the individual differences
- Example: mouse body mass (g)

<table>
<thead>
<tr>
<th>Before</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4</td>
<td>20.2</td>
<td>23.5</td>
<td>17.5</td>
<td>18.6</td>
<td>17.0</td>
<td>18.9</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>After:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6</td>
<td>20.9</td>
<td>23.8</td>
<td>18.0</td>
<td>18.4</td>
<td>17.9</td>
<td>19.3</td>
<td>19.1</td>
<td></td>
</tr>
</tbody>
</table>
Paired t-test

- Samples are paired
- Find the differences:
 \[\Delta_i = x_i - y_i \]
 then
 \[M_\Delta - \text{mean} \]
 \[SD_\Delta - \text{standard deviation} \]
 \[SE_\Delta = SD_\Delta / \sqrt{n} - \text{standard error} \]
- The test statistic is
 \[t = \frac{M_\Delta}{SE_\Delta} \]
- t-distribution with \(n - 1 \) degrees of freedom

Non-paired t-test (Welch)

\[M_{\text{after}} - M_{\text{before}} = 0.46 \text{ g} \]
\[SE = 1.08 \text{ g} \]
\[t = 0.426 \]
\[p = 0.34 \]

Paired test

\[M_\Delta = 0.28 \text{ g} \]
\[SE_\Delta = 0.17 \text{ g} \]
\[t = 2.75 \]
\[p = 0.014 \]
How to do it in R?

```r
# Paired t-test
> before <- c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after <- c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)
> t.test(after, before, paired=TRUE, alternative="greater")

  Paired t-test

  data:  after and before
  t = 2.7545, df = 7, p-value = 0.01416
  alternative hypothesis: true difference in means is greater than 0
  95 percent confidence interval:
       0.1443915      Inf
  sample estimates:
  mean of the differences
       0.4625
```
F-test
Variance

- One sample of size n
- Sample variance

$$SD_{n-1}^2 = \frac{1}{n-1} \sum_i (x_i - M)^2$$

- Generalized variance: mean square

$$MS = \frac{SS}{\nu}$$

- where
 - SS - sum of squared residuals
 - ν - number of degrees of freedom
Comparison of variance

- Consider two samples
 - English mice, \(n_E = 12 \)
 - Scottish mice \(n_S = 9 \)

- We want to test if they come from the populations with the same variance, \(\sigma^2 \)

- Null hypothesis: \(\sigma_1^2 = \sigma_2^2 \)

- We need a test statistic with known distribution
Gedankenexperiment

Population of British mice
\(\mu = 20 \text{ g}, \sigma = 5 \)

Select two samples
size 12 and 9

\[F = \frac{SD_E^2}{SD_S^2} \]

Build distribution of \(F \)

Null distribution represents all random samples when the null hypothesis is true
Test to compare two variances

- Consider two samples, sized n_1 and n_2

- Null hypothesis: they come from distributions with the same variance
 - $H_0: \sigma_1^2 = \sigma_2^2$

- Test statistic:
 $$F = \frac{SD_1^2}{SD_2^2}$$

 is distributed with F-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom

Reminder
Test statistic for two-sample t-test:
$$t = \frac{M_1 - M_2}{SE}$$

Null distribution represents all random samples when the null hypothesis is true

F-distribution, $\nu_1 = 11, \nu_2 = 8$
F-test

- English mice: \(SD_E = 4.61 \text{ g}, n_E = 12 \)
- Scottish mice: \(SD_S = 4.32 \text{ g}, n_E = 9 \)

- Null hypothesis: they come from distributions with the same variance

- Test statistic:
 \[
 F = \frac{4.61^2}{4.32^2} = 1.139
 \]
 \(\nu_E = 11 \)
 \(\nu_S = 8 \)
 \(p = 0.44 \)

\[> 1 - \text{pf}(1.139, 11, 8) \]
\[[1] 0.4375845\]
Two-sample variance test (F-test): summary

<table>
<thead>
<tr>
<th>Input</th>
<th>two samples of n_1 and n_2 measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>compare sample variances</td>
</tr>
<tr>
<td>Null hypothesis</td>
<td>samples came from populations with the same variance</td>
</tr>
<tr>
<td>Comments</td>
<td>requires normality of data right now, it might look pointless, but is necessary in ANOVA. Very important test!</td>
</tr>
</tbody>
</table>
How to do it in R?

Two-sample variance test
> var.test(English, Scottish, alternative="greater")

 F test to compare two variances

data: English and Scottish
F = 1.1389, num df = 11, denom df = 8, p-value = 0.4376
alternative hypothesis: true ratio of variances is greater than 1
95 percent confidence interval:
 0.3437867 Inf
sample estimates:
 ratio of variances
 1.138948
Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html