7. Contingency tables

"Statistics is the grammar of science"

Carl Pearson

Statistical testing

Contingency tables

Drug treatment

	No treatment	Drug X
No improvement	57	32
Improvement	13	46

Enrichment

	In cluster	Outside cluster
With GO-term	6	1
Without GO-term	38	623

Cell counting

Cell counting

	WT	КО
G1	50	61
S	172	175

	WT	KO1	KO2	KO3
G1	50	61	78	43
S	172	175	162	178
G2	55	45	47	59

Chi-square test

Goodness-of-fit test

Pipetting experiment

- Dilution plating over five plates
- Aliquots taken from the same culture
- Count bacterial colonies
- Good pipetting: uniform distribution of counts

Chi-square goodness-of-fit test

	Plate				
	1 2 3 4 5				
Observed	39	21	23	30	28
Expected	28.2	28.2	28.2	28.2	28.2
Residual	2.03	-1.36	-0.98	0.34	-0.04

Test statistic

- Observed: O_i
- Expected: E_i i = 1, 2, ..., n
- Error: $\sqrt{E_i}$

• Residual:
$$\chi_i = \frac{O_i - E_i}{\sqrt{E_i}}$$

Test statistic = sum of squared residuals:

$$\chi^2 = \sum_{i=1}^n \chi_i^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 2.03^2 + 1.36^2 + 0.98^2 + 0.34^2 + 0.04^2 = 7.05$$

χ_i are approximately normal

• Observations O_i have Poisson distribution with mean E_i and standard deviation $\sqrt{E_i}$

$$\chi_i = \frac{O_i - E_i}{\sqrt{E_i}}$$
 looks very much like $Z = \frac{X - \mu}{\sigma}$

Then χ_i roughly follows standardized normal distribution (i.e., centred at 0 and with standard deviation of 1)

Gedankenexperiment

- Simulate dilution plating experiment 1 million times
- Generate random counts with the same total count (141) as the original data
- Uniform distribution between plates: null hypothesis

Note: chi-square distribution

Definition: a sum of squares of independent standard normal variables

$$\chi^2 = \sum_{i=1}^n \chi_i^2$$

• is distributed with χ^2 distribution with n-1 degrees of freedom

Null distribution

Chi-square test

- Test statistic (observed): $\chi^2 = 7.05$
- P-value: probability of observing this, or more extreme, effect by chance, if H₀ is true

Chi-square test in R

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Geissler (1889)

- Birth data from a hospital in Saxony, 1876-1885
- Includes 6115 sibships of 12 children
- Girl/boy ratio $\hat{p} = 0.481 \pm 0.004$ (95% CI)
- Does it follow binomial distribution?

No. girls	Observed
0	7
1	45
2	181
3	478
4	829
5	1112
6	1343
7	1033
8	670
9	286
10	104
11	24
12	3

Reminder: binomial distribution

- n repeated trials
- Two possible outcomes, probability p and 1-p

• Example: toss a coin (p = 0.5)

Geissler (1889)

 $\chi^2 = 110.5$ d. o. f. = 11 p = 0

Degrees of freedom

- Number of independent pieces of information
- Sample size minus number of parameters estimated
- Example: variance

$$SD^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - M)^2$$

To find variance we need to calculate the sample mean first – we lose one degree of freedom

 $\nu = n - 1$

Degrees of freedom

 Example: chi-square for uniform distribution

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

To find χ² we need to calculate the expected distribution, E_i

$$E_i = \frac{N}{n} - \frac{N}{N}$$
 Number of plates

 Normalization of the model (total count) – lose 1 d.o.f.

 $\nu = n - 1$

Degrees of freedom

 Example: chi-square for binomial distribution

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

To find χ² we need to calculate the expected distribution, E_i

$$E_i = N\binom{n}{i} p^i (1-p)^{n-i}$$

 Normalization (total count) and the proportion of girls – lose 2 d.o.f.

 $\nu = n - 2$

Uniform distribution one parameter - proportion

Degrees of freedom in chi-square goodness-of-fit test

- $\nu = n 1 m$
- n sample size
- 1 because of the total count
- m the number of model parameters

Chi-square test: how it works

Observations	O_i	Poisson distribution
Errors <i>chi</i>	$\chi_i = \frac{O_i - E_i}{\sqrt{E_i}}$	Approximately normal distribution
Test statistic chi-square	$\chi^2 = \sum_{i=1}^n \chi_i^2$	Chi-square distribution $n-1-m$ degrees of freedom
P-value	p	Probability of obtaining observed or more extreme result by chance

Chi-square goodness-of-fit test: summary

Input	Counts from <i>n</i> categories
Assumptions	Observations are random and independent Mutual exclusivity (no overlap between categories) Errors are normal
Usage	Compare the observed counts with a theoretical distribution
Null hypothesis	Number of observations in each category is equal to that predicted by the theoretical distribution
Comments	Approximate test Breaks down for small numbers (total count < 100) For small numbers use the exact multinomial (or binomial) test Be careful with the number of degrees of freedom!

Chi-square test

Test of independence

Chi-square test of independence

- Comparing observed (O_{ij}) with expected
 (E_{ij}) values
- Expected values are

 $E_{ij} = Np_i p_j$

 $\square p_i$ – null proportion in row i

- $\square p_j$ null proportion in column j
- \square *N* total number

- Expected values = null hypothesis
- Proportions in columns (rows) are equal

$$\Box \frac{18.6}{61.3} = \frac{23.3\%}{76.7\%} = 0.30$$
$$\Box \frac{23.3}{76.8} = \frac{23.3\%}{76.7\%} = 0.30$$

 Improvement proportion is independent of the drug choice

Chi-square test of independence

- Comparing observed (O_{ij}) with expected (E_{ij}) values
- Expected values are

 $E_{ij} = Np_i p_j$

- □ p_i null proportion in row *i* □ p_j – null proportion in column *j*
- $\square N$ total number
- Test statistic

$$\chi^2 = \sum_{i,j} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

- $\nu = (n_{\text{rows}} 1)(n_{\text{columns}} 1)$
- P-value is from χ² distribution with 1 d.o.f.
- Corresponds to two-sided Fisher's test

	Drug A	Drug B	Total	Proportion
Improvement	12	30	40	11 10 /
improvement	18.6	23.3	42	23.3%
No	68	70	120	76 70/
improvement	61.3	76.8	138	/0./%
Total	80	100	180	
Proportion	44.4%	55.6%		

$$\chi^{2} = \frac{(12 - 18.6)^{2}}{18.6} + \frac{(30 - 23.3)^{2}}{23.3} + \frac{(68 - 61.3)^{2}}{61.3} + \frac{(70 - 76.8)^{2}}{76.8} = 5.59$$

$$p_{chi2} = 0.018$$

$$p_{Fisher} = 0.013$$

Chi-square test for independence

- Flow cytometry experiment
- WT and three KOs
- Take about 280 cells in each condition
- Establish cell cycle stage
- Are the any differences between the WT and KOs?

$$\chi^2 = 15.1$$

 $\nu = (4 - 1)(3 - 1) = 6$
 $p = 0.02$

But what does it mean?

	WT	KO1	KO2	KO3
G1	50	61	78	43
S	172	175	162	178
G2	55	45	47	59

Independence of proportions

- Like in Fisher's test
- Rows and columns are independent
- Proportions between rows do not depend on the choice of column
- Proportions between columns do not depend on the choice of row
- Proportions in each row are 1:2:3:4
- Proportions in each column are 1:2
- This contingency table is consistent with the null hypothesis

	C1	C2	C3	C4
G1	10	20	30	40
G2	20	40	60	80

Pairwise comparison

- Null hypothesis: proportions of cells in G1-S-G2 stages are the same for each condition
- p = 0.02, reject the null hypothesis
- Pairwise comparison
- WT vs. KO1

	WT	KO1
G1	50	61
S	172	175
G2	55	45

$$\chi^2 = 2.09$$

 $\nu = 2$
 $p = 0.35$

	WT	KO1	KO2	KO3
G1	50	61	78	43
S	172	175	162	178
G2	55	45	47	59

Comparison	p-value	Adj. p-value
WT vs. KO1	0.35	1
WT vs. KO2	0.03	0.19
WT vs. KO3	0.69	1
KO1 vs. KO2	0.28	1
KO1 vs. KO3	0.08	0.49
KO2 vs. KO3	0.002	0.01

One versus others

- Compare each column vs. the sum of others
- WT vs. others

	WT	others
G1	50	182
S	172	515
G2	55	151

$$\chi^2 = 1.72$$

 $\nu = 2$
 $p = 0.42$

	WT	KO1	KO2	KO3
G1	50	61	78	43
S	172	175	162	178
G2	55	45	47	59

Comparison	p-value	Adj. p-value
WT	0.42	1
KO1	0.50	1
KO2	0.006	0.02
КОЗ	0.03	0.12

Chi-square test of independence: summary

Input	$n_r imes n_c$ contingency table table contains counts
Assumptions	Observations are random and independent (no before-after) Mutual exclusivity (no overlap between categories) Errors are normal
Usage	Examine if there is an association (contingency) between two variables; whether the proportions in "groups" depend on the "condition" (and vice versa)
Null hypothesis	The proportions between rows do not depend on the choice of column
Comments	Approximate test Use when you have large numbers For small numbers use Fisher's test For before-after data use McNemar's test

How to do it in R?

```
# Colony count test (goodness-of-fit test)
> chisq.test(c(39, 21, 23, 30, 28), p=rep(1/5, 5))
```

Chi-squared test for given probabilities

```
data: c(39, 21, 23, 30, 28)
X-squared = 7.0496, df = 4, p-value = 0.1333
```

```
# Drug comparison
> chisq.test(rbind(c(12, 30), c(68, 70)), correct=FALSE)
```

```
Pearson's Chi-squared test
```

```
data: rbind(c(12, 30), c(68, 70))
X-squared = 5.5901, df = 1, p-value = 0.01806
# Flow cytometry experiment
> cells <- rbind(c(50, 61, 78, 43), c(172, 175, 162, 178), c(55, 45, 47, 59))
> chisq.test(cells)
```

```
Pearson's Chi-squared test
```

```
data: cells
X-squared = 15.122, df = 6, p-value = 0.01933
```

G test

G-test

- Similar to chi-square test
- Based on log-likelihood ratio
- Test statistic

$$G = 2\sum_{i} O_i \ln \frac{O_i}{E_i}$$

- G is chi-square distributed with n − 1 degrees of freedom (n categories)
- For large numbers chi-square test and Gtest give very similar results

G test is like chi-square test

- You can use G test just like chi-square test:
 - Goodness-of-fit test
 - □ Test of independence
- Results are very similar
- Chi-square test is an approximation of the G test
- G is additive, chi-square is not

	Plate				
	1	2	3	4	5
Obs	39	21	23	30	28
Exp	28.2	28.2	28.2	28.2	28.2
$\chi^2 = 7$ $p = 0.1$	7.05 13	G = p =	= 6.85 = 0.14		

	WT	KO1	KO2	KO3
G1	1	61	78	43
S	172	175	162	178
G2	55	45	47	59
2				

$\chi^2 = 15.1$	G = 15.0
p = 0.02	p = 0.02

G test for replicated experiments

Replicate 1					
	WT	KO1	KO2	KO3	
G1	50	61	78	43	
S	172	175	162	178	
G2	55	45	47	59	
G = 15.0 p = 0.02					

Replicate 2 KO2 WT KO1 KO3 G1 54 75 77 34 S 180 168 167 180 G2 50 41 49 50 $G = 21.1 \quad p = 0.002$

	WT	KO1	KO2	KO3	
G1	48	69	80	49	
S	172	166	180	168	
G2	63	38	43	45	
G = 16.5 p = 0.01					

	WT	KO1	KO2	КОЗ
G1	152	205	235	126
S	524	509	509	519
G2	168	124	139	154
$G = 44.9 p = 5 \times 10^{-8}$				

G test for replicated experiments

- Perform G test for each replicate
- Find the total G

$$G_{\rm tot} = G_1 + G_2 + \dots + G_n$$

 $\nu_{\rm tot} = \nu_1 + \nu_2 + \cdots \nu_n$

- Find G_{pool} and v_{pool} from pooled data
- Find heterogeneity G

 $G_{\rm het} = G_{\rm tot} - G_{\rm pool}$

 $v_{\rm het} = v_{\rm tot} - v_{\rm pool}$

Find *p*-value for G_{tot} , v_{tot} and G_{het} , v_{het} from χ^2 distribution

	G	d.o.f	p-value
Replicate 1	15.0	6	0.02
Replicate 2	21.1	6	0.002
Replicate 3	16.5	6	0.01
Total	52.6	18	3×10 ⁻⁵
Pooled	44.9	6	5×10 ⁻⁸
Heterogeneity	7.7	12	0.8

G test for replicated experiments

- G represents deviation from the null hypothesis
- We can split total G into

	G	d.o.f	p-value
Replicate 1	15.0	6	0.02
Replicate 2	21.1	6	0.002
Replicate 3	16.5	6	0.01
Total	52.6	18	3×10 ⁻⁵
Pooled	44.9	6	5×10 ⁻⁸
Heterogeneity	7.7	12	0.8

- Use G_{tot} to test the null hypothesis
- However, if G_{het} is large (and p_{het} significant), the deviation from H₀ is due to variation between replicates

G test: summary

Input	$n_r \times n_c$ contingency table table contains counts possible replicates in cells
Assumptions	Observations are random and independent Mutual exclusivity (no overlap between categories) Errors are normal
Usage	Examine if there is an association (contingency) between two variables; whether the proportions in "groups" depend on the "condition" (and vice versa)
Null hypothesis	The proportions between rows do not depend on the choice of column
Comments	Very similar to chi-square test G and d.o.f. are additive Can be used for replicated experiments Not to be confused with ANOVA!

How to do it in R?

- > install.packages("DescTools")
- > library(DescTools)

Flow cytometry experiment, first replicate

```
> flcyt1 <- rbind(c(50,61,78,43), c(172,175,162,178), c(55,45,47,59))
> GTest(flcyt1)
```

Log likelihood ratio (G-test) test of independence without correction

```
data: flcyt
G = 14.994, X-squared df = 6, p-value = 0.0203
```

The remaining replicates and the pooled value are found in the same fashion

```
# Finding p-value for total and heterogeneity G
> 1 - pchisq(52.6, 18)
[1] 3.024812e-05
> 1 - pchisq(7.7, 12)
```

[1] 0.8081131

McNemar's test

Within-subjects test

Before and after example

Infections before and after treatment (the same patients)

ID	Before	After
1	0	0
2	0	0
3	1	0
4	1	1
500	1	0
501	0	0
502	1	1
Sum	121	34
Proportion	24%	6.8%

		After	
		no	yes
Poforo	no	321	34
Belore	yes	121	26

Before and after example

		After	
		no	yes
Before	no	321	34
	yes	121	26

```
> mcnemar.test(rbind(c(321, 34), c(121, 26)))
McNemar's Chi-squared test with continuity correction
data: rbind(c(321, 34), c(121, 26))
McNemar's chi-squared = 47.716, df = 1, p-value = 4.926e-12
```

Contingency table tests

Test	Table	To test if	Comments
Fisher's exact	2×2	rows and columns are independent; proportions are equal	Works for small numbers, some consider it too conservative
Chi-square goodness-of-fit	$1 \times n$	observed counts follow a theoretical distribution	Requires categorical data, doesn't work for continuous distributions
Chi-square test of independence	$n_r imes n_c$	rows and columns are independent; proportions are equal	Similar to Fisher's works better with large numbers
G-test of independence	n _r ×n _c	rows and columns are independent; proportions are equal	Similar to chi-square test, more powerful, can take replicates into account
McNemar's test	2×2	symmetry of rows and columns	Appropriate for paired data, e.g., before-after data on the same subjects

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html