6. Statistical hypothesis testing

"I can prove anything by statistics except the truth"

George Canning

Biology and statistics wishful thinking

Experiment

Statistics

P-Values: Misunderstood and Misused

Bertie Vidgen and Taha Yasseri*

MINI REVIEW published: 04 March 2016 doi: 10.3389/fphy.2016.00006

The fickle *P* value generates irreproducible results

Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

NATURE METHODS | VOL.12 NO.3 | MARCH 2015 | 179

Open access, freely available online

Null hypothesis

Null hypothesis

Evidence against H_o

Two samples of mice 12 English mice 9 Scottish mice

Body mass difference:

 $\Delta M = M_S - M_E = 5.0 \text{ g}$

- Two possibilities
 real difference
 - Iluke
- What are the chances of the fluke?

Gedankenexperiment under the null hypothesis

Gedankenexperiment: result under null hypothesis

Gedankenexperiment: p-value

Null hypothesis and p-value

We observe an effect, but it will occur by chance in 1.2% of repeated experiments (1 in 80)

You have 1.2% chance of making a fool of yourself (if you publish this result)

P-value is the probability of making a fool of yourself

Why "more extreme"?

Null hypothesis: reject or what?

- absence of evidence is not evidence of absence!
- evidence too weak?

- data are incompatible with H₀...
- ...or any of the other assumptions
- reject H₀ at your own risk

You cannot confirm the null hypothesis

You cannot prove the null hypothesis

Statistical testing

Fisher's exact test

Ronald Fisher

Sir Ronald Aylmer Fisher (1890-1962) Rothamsted Experimental Station (Hertfordshire)

The appreciation of tea

Milk first

Tea first

Null hypothesis: Ms Bristol has no clue

Let's draw some balls

Draw n balls without replacement

removing balls changes probability!

Urn with *N* balls *m* of them white

What is the probability of finding exactly k white balls?

Binomial coefficient

"n chose k"

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- In combinatorics it is the number of possible k-element subsets of an nelement set
- From a 5-element set there are 10 possible 3-element subsets

$$\binom{5}{3} = \frac{5!}{3!\,2!} = \frac{120}{6\times 2} = 10$$

Hypergeometric probability

- *N* = 36 balls
- m = 20 are white
- n = 10 balls drawn
- What is the probability of finding exactly k = 8 white balls in the draw?

$$P(X = 8) = \frac{\binom{20}{8}\binom{16}{2}}{\binom{36}{10}}$$

 $=\frac{125,970\times120}{254,186,856}=\frac{15,116,400}{254,186,856}\approx 0.059$

	Drawn	Not drawn	Total
White	8	12	20
Black	2	14	16
Total	10	26	36

Contingency table

Contingency table contains counts

Hypergeometric distribution

 If sums are fixed (blue fields), the cells in the table follow hypergeometric distribution

$$P\begin{bmatrix} 0 & 20\\ 10 & 6 \end{bmatrix} = 3.2 \times 10^{-5}$$
$$P\begin{bmatrix} 1 & 19\\ 9 & 7 \end{bmatrix} = 0.00090$$
$$P\begin{bmatrix} 2 & 18\\ 8 & 8 \end{bmatrix} = 0.0096$$
...
$$P\begin{bmatrix} 8 & 12\\ 2 & 14 \end{bmatrix} = 0.059$$
$$P\begin{bmatrix} 9 & 11\\ 1 & 15 \end{bmatrix} = 0.011$$
$$P\begin{bmatrix} 10 & 10\\ 0 & 16 \end{bmatrix} = 0.00073$$

	Drawn	Not drawn	Total
White	k	20 - k	20
Black	10 – <i>k</i>	6+k	16
Total	10	26	36

Hypergeometric distribution

 If sums are fixed (blue fields), the cells in the table follow hypergeometric distribution

$$P\begin{bmatrix} 0 & 20\\ 10 & 6 \end{bmatrix} = 3.2 \times 10^{-5}$$
$$P\begin{bmatrix} 1 & 19\\ 9 & 7 \end{bmatrix} = 0.00090$$
$$P\begin{bmatrix} 2 & 18\\ 8 & 8 \end{bmatrix} = 0.0096$$
...
$$P\begin{bmatrix} 8 & 12\\ 2 & 14 \end{bmatrix} = 0.059$$
$$P\begin{bmatrix} 9 & 11\\ 1 & 15 \end{bmatrix} = 0.011$$
$$P\begin{bmatrix} 10 & 10\\ 0 & 16 \end{bmatrix} = 0.00073$$

	Drawn	Not drawn	Total
White	10	10	20
Black	0	16	16
Total	10	26	36

One-sided test

What is the probability of drawing 8 or more white balls?

 $P(X \ge 8) = 0.059 + 0.011 + 0.00073$ = 0.071

- Enrichment: do we have more than random? (right-sided test)
- Depletion: do we have fewer than random? (left-sided test)

> 1 - phyper(7, 20, 16, 10) [1] 0.07076887

Two-sided test

- One-sided test: do we observed too many white balls?
- Two-sided test: do we observe too many or too few white balls?
- Is my result extreme in any way?
- Add all probabilities less or equal P(X = 8) on both sides

 $P(X \le 3 \cup X \ge 8) = 0.13$

Tea tasting by Muriel Bristol

Tea first

Tea tasting test

- Null hypothesis: Ms Bristol has no ability to tell the difference
- One-sided probability of getting this or more extreme result by chance is

 $P(X \ge 3) = 0.229 + 0.014 \approx 0.24$

- The null hypothesis cannot be rejected
- Insufficient data!

	Tea first	Milk first	Total
Ms Bristol says "tea first"	3	1	4
Ms Bristol says "milk first"	1	3	4
Total	4	4	8

Contingency table

- Two variables (in columns and rows)
- E.g. treatments vs outcomes
- Contingency = association

2x2 contingency table

Test of independence

- Two variables (in columns and rows)
- E.g. treatments vs outcomes

- H₀: variables are independent
- Ms Bristol's answers do not depend on whether she got milk or tea first; they are random

2x2 contingency table

Tea served	Т	Т	Μ	Т	Т	Μ	Т	Μ	Т	Т	Μ	Μ	m = 0
Ms. Bristol	Т	Μ	Μ	Μ	Т	Т	Т	Т	Т	Μ	Т	Т	p = 0
Tea served	Т	Т	Μ	Т	Т	Μ	Т	Μ	Т	Т	Μ	Μ	n - 0
Ms. Bristol	Т	Т	Μ	Μ	Т	Μ	Μ	Μ	Т	Т	Μ	Μ	p = 0

Test of proportion

Enrichment analysis

Is our GO-term more frequent in the selection than random?

Is GO-term enriched?

Enrichment example

- There are 668 genes in an experiment
- 7 of them have GO:00301174
- 44 genes are differentially expressed
- 6 of them have this GO term
- Is it significantly enriched?

 $P(X \ge 6) \approx 4 \times 10^{-7}$

P(X > 5)
> 1 - phyper(5, 7, 661, 44)
[1] 3.893907e-07

Absolute numbers are important

- A newspaper reports clinical tests on a new cancer drug
- 15% of patients treated with drug A survived
- 30% of patients treated with drug B survived
- So, drug B is 100% better than drug A!

Absolute numbers are important

- A newspaper reports clinical tests on a new cancer drug
- 15% of patients treated with drug A survived
- 30% of patients treated with drug B survived
- So, drug B is 100% better than drug A!
- Actual numbers: 20 and 10 patients
- p = 0.37 (two-sided test)

	Drug A	Drug B	Total
Alive	3	3	6
Dead	17	7	24
Total	20	10	30
			p = 0.37

Absolute numbers are important

- A newspaper reports clinical tests on a new cancer drug
- 15% of patients treated with drug A survived
- 30% of patients treated with drug B survived
- So, drug B is 100% better than drug A!
- Actual numbers: 20 and 10 patients
- *p* = 0.37
- If we had 80 and 100 patients and the same proportions
- *p* = 0.02
- Moral 1: don't trust newspapers
- Moral 2: estimate the required size of your sample before you do your experiment

	Drug A	Drug B	Total
Alive	3	3	6
Dead	17	7	24
Total	20	10	30
			. 0.27

	Drug A	Drug B	Total
Alive	12	30	42
Dead	68	70	138
Total	80	100	180

p = 0.02

Never, ever use percentages in Fisher's test!

Fisher's exact test: summary

Input	2×2 contingency table (larger tables possible) typically columns = treatments, rows = outcomes table contains counts counts of subjects falling into categories
Usage	Examine if there is an association (contingency) between two variables; whether the proportions in one variable depend on the proportions in the other variable; if there is enrichment
Null hypothesis	The proportions in one variable do not depend on the proportions in the other variable
Comments	Exact test – count all possible combinations Use when you have small numbers For large numbers (hundreds) use chi-square test Carefully chose between one- and two-sided test

How to do it in R?

```
# Tea tasting
> fisher.test(rbind(c(3, 1), c(1, 3)), alternative="greater")
          Fisher's Exact Test for Count Data
data: rbind(c(3, 1), c(1, 3))
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 0.3135693
                 Tnf
sample estimates:
odds ratio
  6.408309
# GO enrichment
> fisher.test(rbind(c(6, 1), c(38, 623)), alternative="greater")
          Fisher's Exact Test for Count Data
data: rbind(c(6, 1), c(38, 623))
p-value = 3.894e-07
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 14.29724
               Inf
sample estimates:
odds ratio
  96.29591
```

> rbind(c(3, 1), c(1, 3))
 [,1] [,2]
[1,] 3 1
[2,] 1 3

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html