
4. Confidence intervals

“95% of statistics is made up on the spot”

Anonymous



Reminder: 95% confidence interval

n There is a 95% probability that the random interval includes the true mean

n If you were to repeat the entire experiment many times
o 95% of cases the true mean would be within the calculated interval
o 5% of cases (1 in 20) it would be outside it (false result)

sample
mean

95% CI

population
mean



Confidence interval for count data



Confidence interval for count data
n Standard error of a count, 𝐶, is

𝑆𝐸 = 𝐶

n For example, 5 ± 2 (after rounding up)

n How to find a confidence interval on 𝜇?
n Exact method: a bit complicated

𝐶 = 5 ± 2 (SE)



Confidence interval for count data: hand waving
𝜇! = 1.62

𝜇" = 11.67

2.5%

2.5%

95% CI

Find 𝜇! such that
𝑘 cuts off 2.5% at right𝑘 = 5

Find 𝜇" such that
𝑘 cuts off 2.5% at left

𝐶 = 5#$%& (95% CI)



Confidence interval for count data: exact method
n Solving equations for Poisson cumulative distribution

> poisson.test(5, conf.level = 0.95)

 Exact Poisson test

data:  5 time base: 1
number of events = 5, time base = 1, p-value = 0.00366
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
  1.623486 11.668332
sample estimates:
event rate 
         5 



Count errors: example

95% CI

SE

Small counts Large counts



Confidence intervals for count data are not integer
n 95% CI for 𝐶 = 5 is [1.6, 11.8]
n Shouldn’t the confidence interval be exactly 

integer?

n The mean in a Poisson process is not integer
n Confidence intervals are for the true mean and 

are not integer

n Confidence interval is not for the sample count!
n We expect the true mean to be within [1.6, 11.8]

with a certain confidence

Poisson distribution

Horse kick data

𝜇 = 0.7



Confidence interval of the correlation 
coefficient



Confidence interval of the correlation coefficient

n Pearson’s correlation coefficient 𝑟 for a sample 
of pairs (𝑥!, 𝑦!)

n It is not enough to say “we find 𝑟 = 0.82, 
therefore our samples are correlated”

n Confidence limits on 𝑟 or significance of 
correlation

𝑟 = 0.74



Sampling distribution of the correlation coefficient

n Gedankenexperiment
n Consider a population of pairs of numbers 
(𝑥' , 𝑦')

n The (unknown) population correlation 
coefficient, 𝜌 = 0.7

n Draw lots of samples of pairs, size 𝑛
n Calculate the correlation coefficient for each 

sample

n Build a sampling distribution of the correlation 
coefficient



Sampling distribution of the correlation coefficient

n Sampling distribution of 𝑟
n Unknown in analytical form

n Let us transform it into a known 
distribution

n Fisher’s transformation:

𝑧 =
1
2 ln

1 + 𝑟
1 − 𝑟

n Build a sampling distribution of 𝑧

Interval containing
95% of samples

Desired fraction
95%

Reject 2.5%
Reject 2.5%



Confidence interval of the correlation coefficient

𝜇 = 𝑍, 𝜎 =
1
𝑛 − 3

Confidence interval of 𝑟

Desired fraction
95%

Reject 2.5%Reject 2.5%

Confidence interval of 𝑧

Desired fraction
95%

Reject 2.5%Reject 2.5%

Sampling distribution of 𝑟 Sampling distribution of 𝑍
𝑧 =

1
2 ln

1 + 𝑟
1 − 𝑟



Example: 95% confidence limits on 𝑟
n 𝑛 = 30 and 𝑟 = 0.7
n First, find

𝑍 =
1
2 ln

1 + 𝑟
1 − 𝑟 = 0.867

𝜎 =
1
𝑛 − 3

= 0.192

n 𝑍 is normally distributed
n 95% CI corresponds to Z ± 1.96𝜎:

o 𝑍! = 𝑍 − 1.96𝜎 = 0.490
o 𝑍" = 𝑍 + 1.96𝜎 = 1.24

95%

2.5%2.5%

𝑍 𝑍(𝑍)



Example: 95% confidence limits on 𝑟
n 𝑛 = 30 and 𝑟 = 0.7
n First, find

𝑍 =
1
2
ln
1 + 𝑟
1 − 𝑟

= 0.867

𝜎 =
1
𝑛 − 3

= 0.192

n 𝑍 is normally distributed
n 95% CI corresponds to Z ± 1.96𝜎:

o 𝑍! = 𝑍 − 1.96𝜎 = 0.490
o 𝑍" = 𝑍 + 1.96𝜎 = 1.24

n Now we find the corresponding limits on 𝑟

𝑟 =
𝑒"* − 1
𝑒"* + 1

o 𝑟! = 0.454
o 𝑟" = 0.847

n Hence, with 95% confidence, 𝑟 = 0.7#+."-%+.!-

95%

2.5%2.5%

𝑍 𝑍(𝑍)

𝑟𝑟𝐿 𝑟𝑈



How to do this in R
> r <- 0.7
> n <- 30
> Z <- 0.5 * log((1+r) / (1-r))
> Z
[1] 0.8673005
> sigma <- 1 / sqrt(n - 3)
> sigma
[1] 0.1924501
> Z95 <- qnorm(0.975)
> Z95
[1] 1.959964
> Z.limits <- c(Z - Z95 * sigma, Z + Z95 * sigma)
> Z.limits
[1] 0.4901053 1.2444958
> r.limits <- (exp(2*Z.limits) - 1) / (exp(2*Z.limits) + 1)
> r.limits
[1] 0.4543000 0.8467329

Need to know 𝑟 and 𝑛



How to do this in R: the easy way
# generate random data (in reproducible way)
> set.seed(47)
> x <- 1:30
> y <- x + rnorm(30, 0, 7)
# correlation test to find CI
> cor.test(x, y)

Pearson's product-moment correlation

data:  x and y
t = 5.1419, df = 28, p-value = 1.882e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4494788 0.8450094
sample estimates:

cor
0.6968971 

Need to know all data



Example: 95% CI for correlation with 𝑛 = 6 and 𝑛 = 30

𝑟 = 0.7

𝐶𝐼 = −0.26, 0.96
𝑝 = 0.12

𝐶𝐼 = 0.45, 0.85
𝑝 = 2×10#-



Confidence interval of a proportion



Confidence interval of a proportion
n Proportion:

𝑝̂ =
J𝑆
𝑛 =

number of successes
sample size

n Examples:
o poll results
o survival experiments
o counting cells with a property

n Sample proportion, 𝑝̂, is an estimator of the 
(unknown) population proportion, 𝑝

J𝑆 = 4

𝑛 = 12+

𝑝̂ =
4
12 = 0.33



Sampling distribution of a proportion
n Gedankenexperiment
n Population of mice where 𝑝 = 13% are immune to a 

certain disease

n Draw a random sample of size 𝑛 and find the proportion 
of immune mice, 𝑝̂, in the sample

n Repeat 100,000 times and plot the distribution of 𝑝̂

n What kind of distribution is it?
n Hint: every time you select a mouse, it can be either 

immune or not, with probability 𝑝 or 1 − 𝑝

n Binomial distribution
o immune = “success”, probability 𝑝
o not immune = “failure”, probability 1 − 𝑝

n Good! Sampling distribution is known

𝑛 = 998

𝑛 = 50

𝑛 = 10



Sampling distribution of a proportion: scaled binomial
Absolute numbers
n 𝑋 – binomial random variable
n Mean and standard deviation

𝜇 = 𝑛𝑝

𝜎 = 𝑛𝑝(1 − 𝑝)

Proportion
n 𝑅 = 𝑋/𝑛 – scaled binomial random variable
n Mean and standard deviation scaled by 𝑛:

𝜇. = 𝑝

𝜎𝑅 =
𝑝(1 − 𝑝)

𝑛

𝑛 = 998

𝑛 = 50

𝑛 = 10



𝑛 = 998

𝑛 = 50

𝑛 = 10

Sampling distribution of a proportion
n Width of the sampling distribution of a proportion

𝜎𝑅 =
𝑝(1 − 𝑝)

𝑛

𝜎& = 0.01

𝜎& = 0.05

𝜎& = 0.1



Reminder from lecture 2



Sampling distribution of a proportion

n Width of the sampling distribution of a proportion

𝜎𝑅 =
𝑝(1 − 𝑝)

𝑛

n Replace an unknown population parameter, 𝑝, with 
the observed estimator, 𝑝̂

𝑆𝐸. =
𝑝̂(1 − 𝑝̂)

𝑛

n Standard error of a proportion
n 𝑆𝐸. estimates the width of the sampling distribution

n Approximate 95% CI is 1.96×𝑆𝐸.

n However, this doesn’t work for small 𝑛, or when 
proportion is close to 0 or 1

𝑛 = 998

𝑛 = 50

𝑛 = 10

𝜎& = 0.01

𝜎& = 0.05

𝜎& = 0.1



Example in R using prop.test
Method provided by Wilson (1927). The interval is asymmetric.

> prop.test(1, 10)

 1-sample proportions test with continuity correction

data:  1 out of 10, null probability 0.5
X-squared = 4.9, df = 1, p-value = 0.02686
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.005242302 0.458846016
sample estimates:
  p 
0.1 



Confidence intervals of a proportion
n Consider survival experiment

o take 10 mice
o infect with something nasty
o apply treatment
o count survival proportion over time

n We need errors of proportion!



Confidence intervals of a proportion
n Consider survival experiment

o take 10 mice
o infect with something nasty
o apply treatment
o count survival proportion over time

n 95% CIs
n The bigger sample, the smaller error

n Even when 𝑝̂ = 0, error allows for non-zero 
proportion

n We have zombie mice!

𝑛 = 10

𝑛 = 100



Beware of small samples!
n When you count things, small samples are not very good
n Consider a small number 𝑛 = 10

n When you do counts, you need 𝑛 > 30

Count
𝐶 = 10

Correlation
𝑟 = 0.73

Proportion
J𝑆 = 3

95% CI [4.8, 18.4] [0.19, 0.93] [0.10, 0.61]
Half CI as a fraction 
of the value

68% 51% 71%



Small and large numbers

Count, proportion, correlation Mean, median

Number Small Large Any

Observed variability Counting statistics Biology Biology

Example 5 mice out of 12 120 cells out of 860 Sample of 5

What to use Low-count statistics Replicates Replicates



Bootstrapping



Bootstrapping
n Versatile technique used when

o distribution of the estimator is complicated or unknown
o for power calculations

n Approximate sampling distribution from one sample only
n Use random resampling with replacement

n Repeat this many times (e.g. 105) and collect all means
n Build the bootstrap distribution of the mean

19.4			18.2			11.5			17.2			25.7			19.2			21.5			16.7			15.6			27.7			14.3			16.3							𝑀 = 18.6

27.7	 18.2	 18.2	 25.7	 11.5	 17.2	 17.2	 25.7	 21.5	 11.5	 14.3	 17.2	 𝑀 = 18.8
19.2	 14.3	 19.2	 15.6	 14.3	 14.3	 17.2	 16.3	 19.2	 19.2	 16.3	 21.5	 𝑀 = 17.2
14.3	 17.2	 18.2	 18.2	 18.2	 11.5	 14.3	 18.2	 17.2	 19.4	 11.5	 16.3	 𝑀 = 16.2
25.7	 18.2	 15.6	 15.6	 19.4	 19.2	 18.2	 19.4	 21.5	 16.7	 14.3	 18.2	 𝑀 = 18.5
19.2	 21.5	 16.7	 17.2	 21.5	 18.2	 21.5	 17.2	 21.5	 15.6	 21.5	 21.5	 𝑀 = 19.4
…

original sample

resamples



Bootstrapping

95% CI on the population mean
• from t-distribution [15.7, 21.5]
• from bootstrapping [16.3, 21.2]

This is not a sampling 
distribution, it only 
approximates it

95% CI from bootstrap

95% CI from t-distribution



Confidence intervals in R

Quantity R function

Mean t.test

Median wilcox.test

Count poisson.test

Correlation cor.test

Proportion prop.test

Most statistical test functions in R provide with confidence intervals.



How to extract CI limits in R
> prop.test(12, 87)

 1-sample proportions test with continuity correction

data:  12 out of 87, null probability 0.5
X-squared = 44.184, df = 1, p-value = 2.989e-11
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.07637419 0.23243382
sample estimates:
       p 
0.137931 

# store test result in a variable
> p <- prop.test(12, 87)
# extract confidence intervals from object p
> ci <- p$conf.int
# ci is a vector of two elements: lower and upper CI limit
> ci[1]
[1] 0.07637419
> ci[2]
[1] 0.2324338



Slides available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


