4. Confidence intervals

"95% of statistics is made up on the spot"

Anonymous

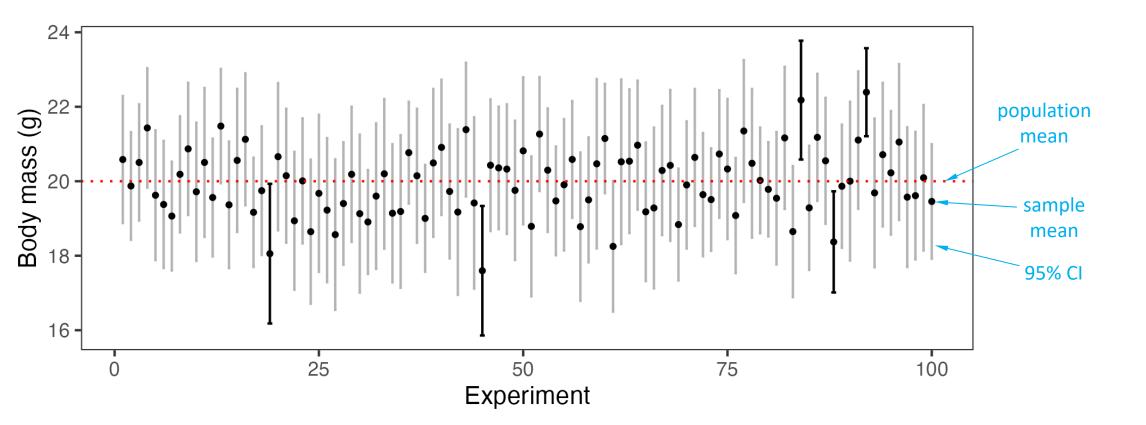
Reminder: 95% confidence interval

There is a 95% probability that the random interval includes the true mean

If you were to repeat the entire experiment many times

□ 95% of cases the true mean would be within the calculated interval

□ 5% of cases (1 in 20) it would be outside it (false result)



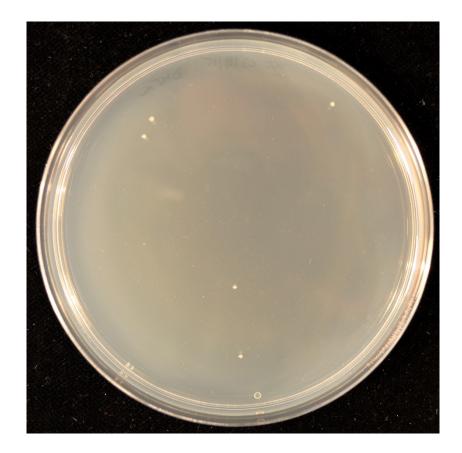
Confidence interval for count data

Confidence interval for count data

Standard error of a count, *C*, is

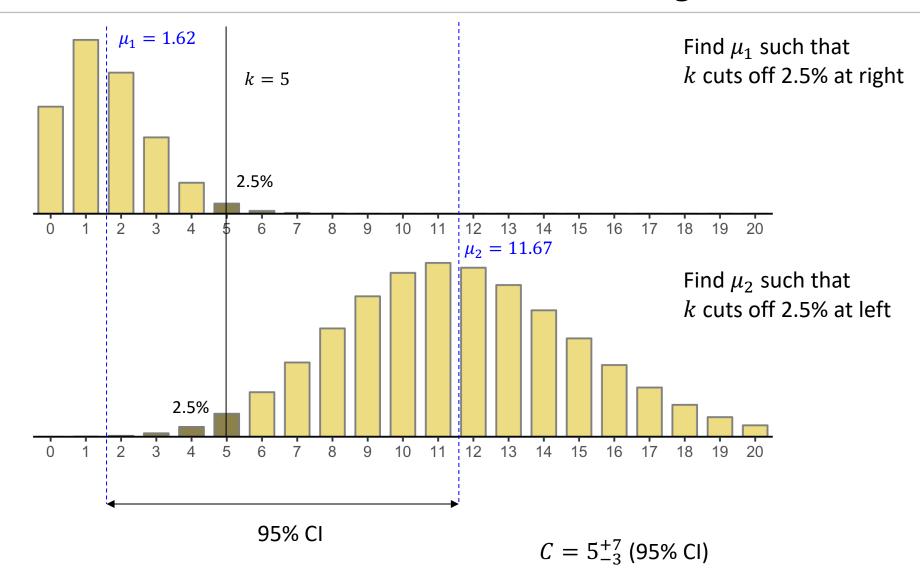
 $SE = \sqrt{C}$

- For example, 5 ± 2 (after rounding up)
- How to find a confidence interval on μ ?
- Exact method: a bit complicated



 $C = 5 \pm 2$ (SE)

Confidence interval for count data: hand waving

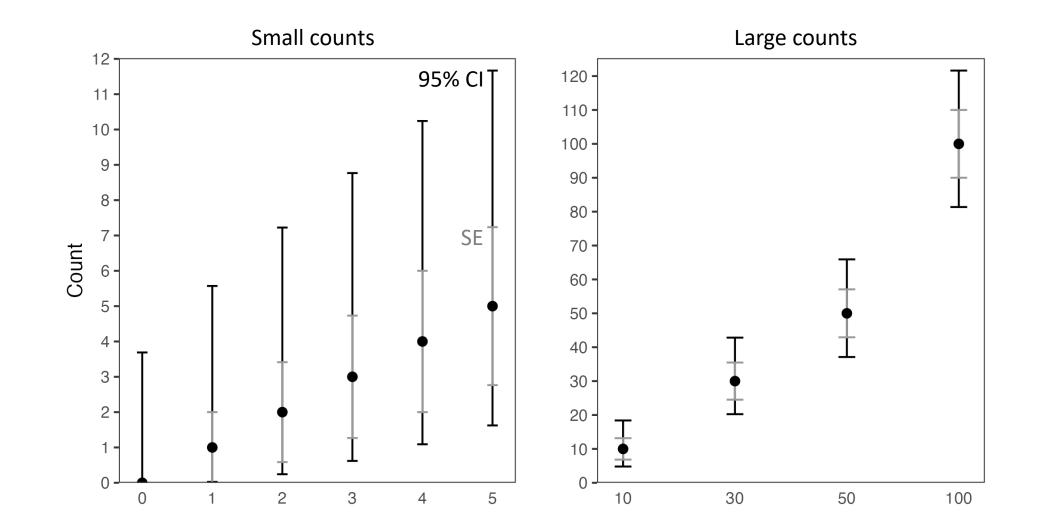


Confidence interval for count data: exact method

Solving equations for Poisson cumulative distribution

```
> poisson.test(5, conf.level = 0.95)
        Exact Poisson test
data: 5 time base: 1
number of events = 5, time base = 1, p-value = 0.00366
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
 (1.623486 11.668332)
sample estimates:
event rate
         5
```

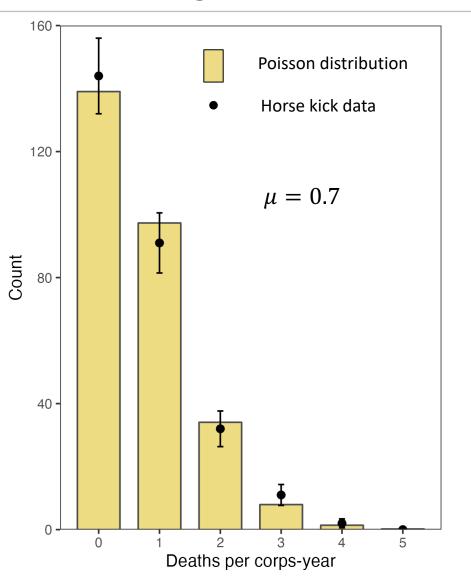
Count errors: example



Confidence intervals for count data are not integer

- 95% CI for *C* = 5 is [1.6, 11.8]
- Shouldn't the confidence interval be exactly integer?
- Confidence interval is not for the sample count!
- We expect the *true mean* to be within [1.6, 11.8] with a certain confidence

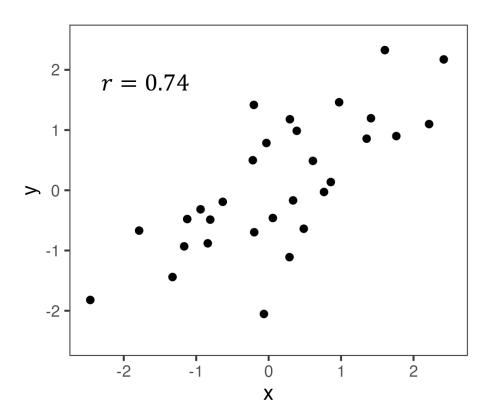
- The mean in a Poisson process is not integer
- Confidence intervals are for the true mean and are not integer



Confidence interval of the correlation coefficient

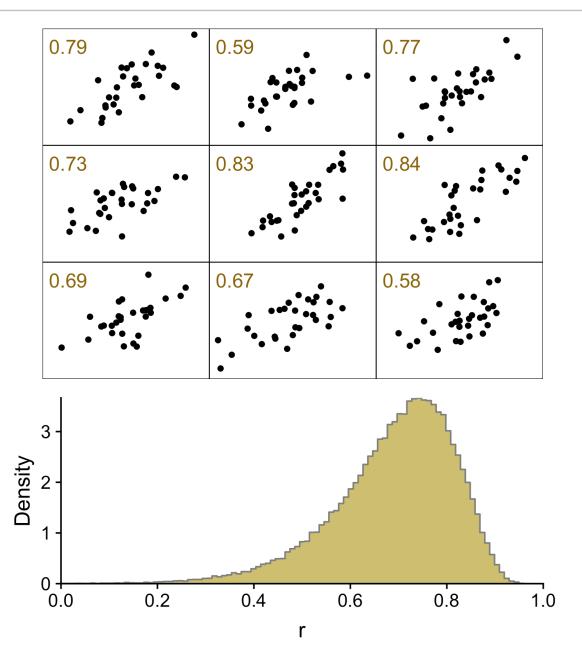
Confidence interval of the correlation coefficient

- Pearson's correlation coefficient r for a sample of pairs (x_i, y_i)
- It is not enough to say "we find r = 0.82, therefore our samples are correlated"
- Confidence limits on r or significance of correlation



Sampling distribution of the correlation coefficient

- Gedankenexperiment
- Consider a population of pairs of numbers
 (x_i, y_i)
- The (unknown) population correlation coefficient, $\rho = 0.7$
- Draw lots of samples of pairs, size n
- Calculate the correlation coefficient for each sample
- Build a sampling distribution of the correlation coefficient

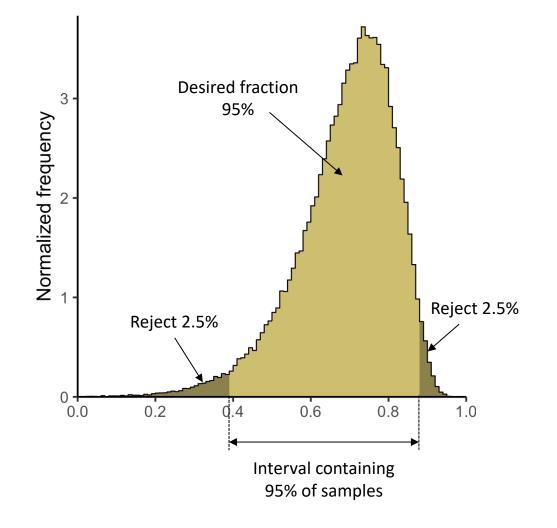


Sampling distribution of the correlation coefficient

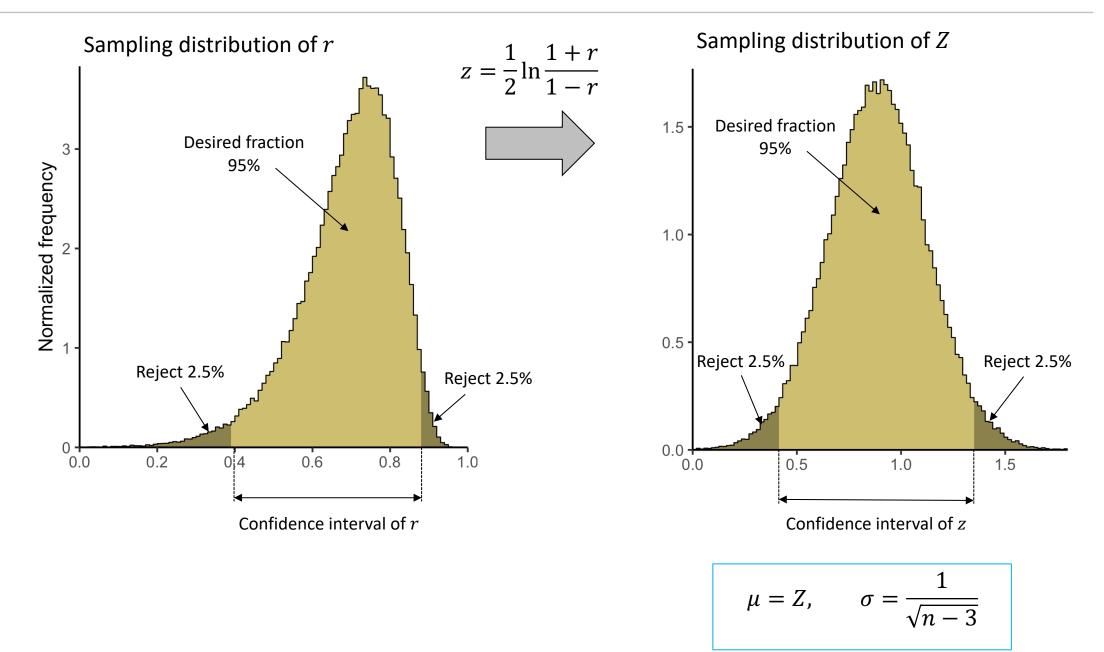
- Sampling distribution of r
- Unknown in analytical form
- Let us transform it into a known distribution
- Fisher's transformation:

$$z = \frac{1}{2} \ln \frac{1+r}{1-r}$$

Build a sampling distribution of z



Confidence interval of the correlation coefficient

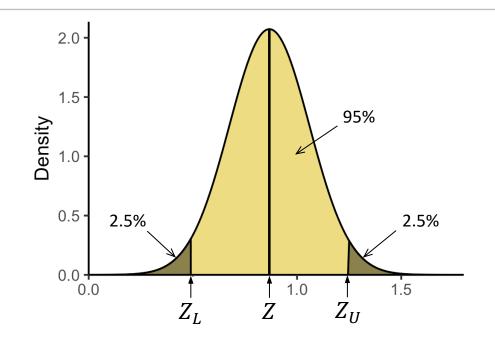


Example: 95% confidence limits on *r*

• n = 30 and r = 0.7• First, find $Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.867$ $\sigma = \frac{1}{\sqrt{n-3}} = 0.192$

- Z is normally distributed
- 95% CI corresponds to $Z \pm 1.96\sigma$:

 $\Box Z_L = Z - 1.96\sigma = 0.490$ $\Box Z_U = Z + 1.96\sigma = 1.24$



Example: 95% confidence limits on r

- n = 30 and r = 0.7
- First, find

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.867$$
$$\sigma = \frac{1}{\sqrt{n-3}} = 0.192$$

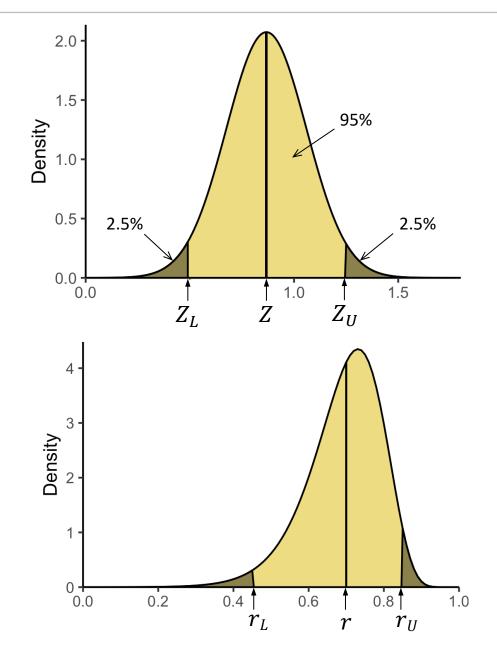
- Z is normally distributed
- 95% Cl corresponds to $Z \pm 1.96\sigma$: $\Box Z_L = Z - 1.96\sigma = 0.490$ $\Box Z_U = Z + 1.96\sigma = 1.24$
- Now we find the corresponding limits on r

$$r = \frac{e^{2Z} - 1}{e^{2Z} + 1}$$

$$\Box r_L = 0.454$$

 $\Box r_{II} = 0.847$

• Hence, with 95% confidence, $r = 0.7^{+0.15}_{-0.25}$



How to do this in R

```
> r <- 0.7
> n <- 30
> Z <- 0.5 * log((1+r) / (1-r))
> Z
[1] 0.8673005
> sigma <- 1 / sqrt(n - 3)</pre>
> sigma
[1] 0.1924501
> Z95 <- qnorm(0.975)</pre>
> Z95
[1] 1.959964
> Z.limits <- c(Z - Z95 * sigma, Z + Z95 * sigma)</pre>
> Z.limits
[1] 0.4901053 1.2444958
> r.limits <- (\exp(2*Z.limits) - 1) / (\exp(2*Z.limits) + 1)
> r.limits
[1] 0.4543000 0.8467329
```

Need to know *r* and *n*

How to do this in R: the easy way

```
# generate random data (in reproducible way)
> set.seed(47)
> x <- 1:30
> y <- x + rnorm(30, 0, 7)
# correlation test to find CI
> cor.test(x, y)
Pearson's product-moment correlation
data: x and y
```

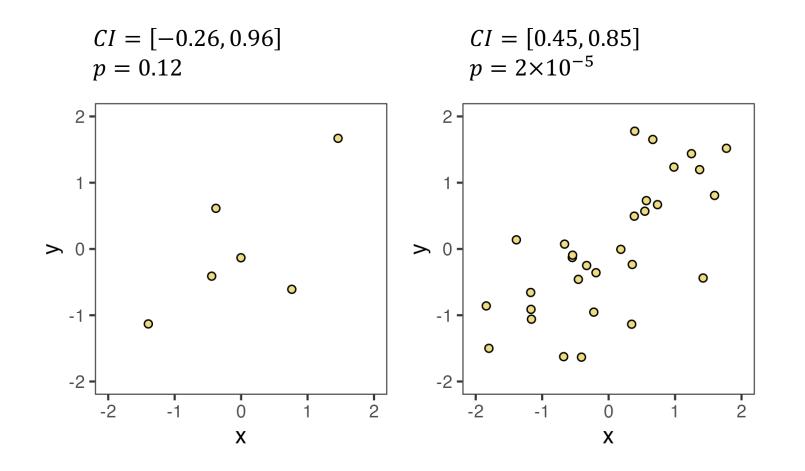
```
t = 5.1419, df = 28, p-value = 1.882e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.4494788 0.8450094
sample estimates:
    cor
```

0.6968971

Need to know all data

Example: 95% CI for correlation with n = 6 and n = 30

r = 0.7



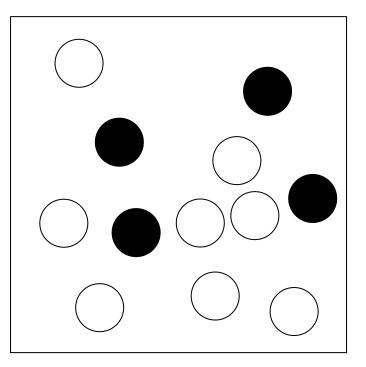
Confidence interval of a proportion

Confidence interval of a proportion

Proportion:

$$\hat{p} = \frac{\hat{S}}{n} = \frac{\text{number of successes}}{\text{sample size}}$$

- Examples:
 - $\hfill\square$ poll results
 - $\hfill\square$ survival experiments
 - $\hfill\square$ counting cells with a property
- Sample proportion, p̂, is an estimator of the (unknown) population proportion, p



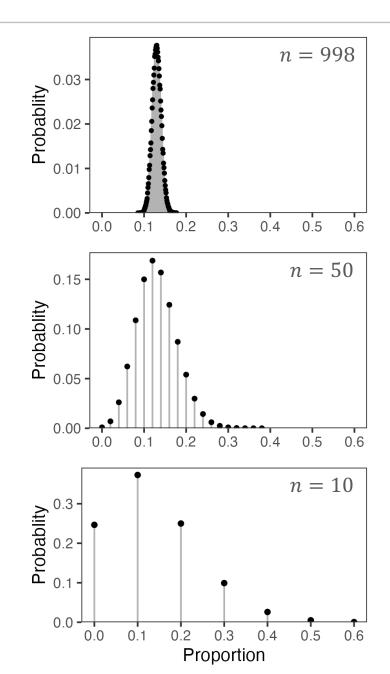
•
$$\hat{S} = 4$$

$$\circ + \bullet \quad n = 12$$

$$\hat{p} = \frac{4}{12} = 0.33$$

Sampling distribution of a proportion

- Gedankenexperiment
- Population of mice where p = 13% are immune to a certain disease
- Draw a random sample of size n and find the proportion of immune mice, p̂, in the sample
- Repeat 100,000 times and plot the distribution of \hat{p}
- What kind of distribution is it?
- Hint: every time you select a mouse, it can be either immune or not, with probability p or 1 p
- Binomial distribution
 - \Box immune = "success", probability p
 - \square not immune = "failure", probability 1-p
- Good! Sampling distribution is known



Sampling distribution of a proportion: scaled binomial

Absolute numbers

- X binomial random variable
- Mean and standard deviation

$$\mu = np$$

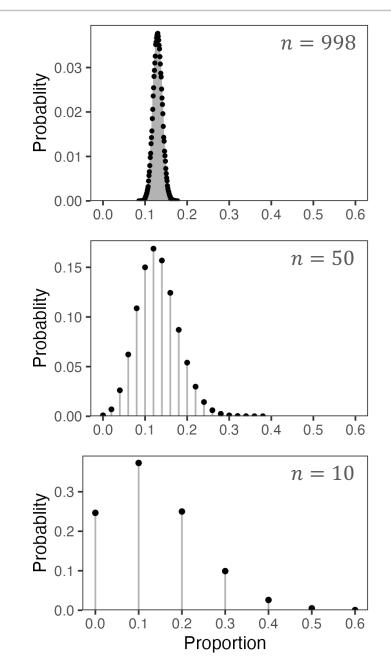
$$\sigma = \sqrt{np(1-p)}$$

Proportion

- R = X/n scaled binomial random variable
- Mean and standard deviation scaled by n:

 $\mu_R = p$

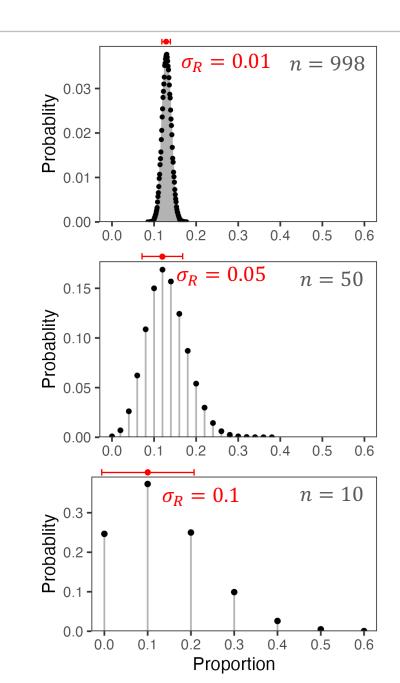
$$\sigma_R = \sqrt{\frac{p(1-p)}{n}}$$



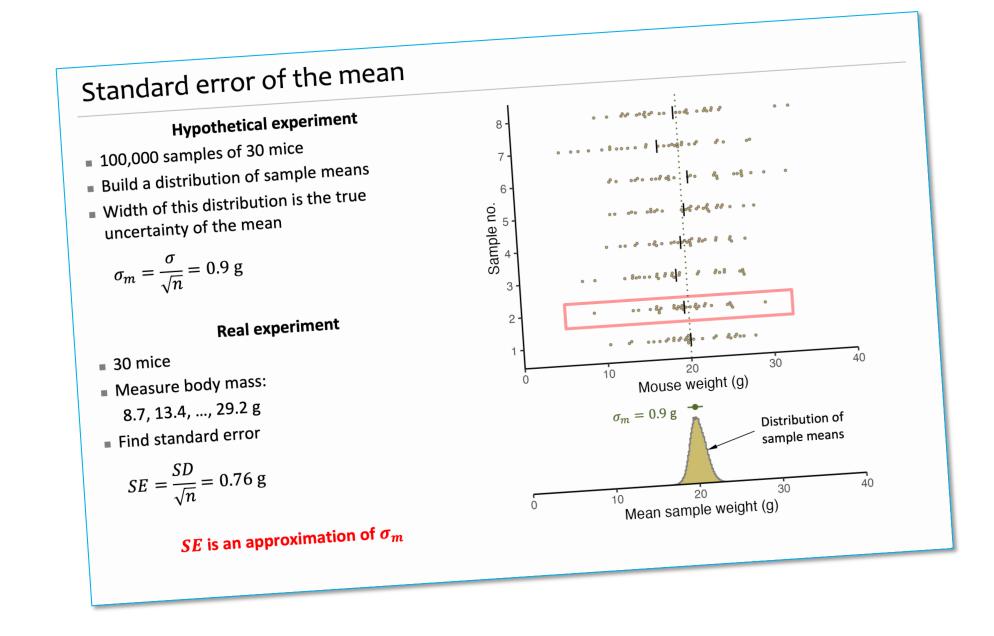
Sampling distribution of a proportion

Width of the sampling distribution of a proportion

$$\sigma_R = \sqrt{\frac{p(1-p)}{n}}$$



Reminder from lecture 2



Sampling distribution of a proportion

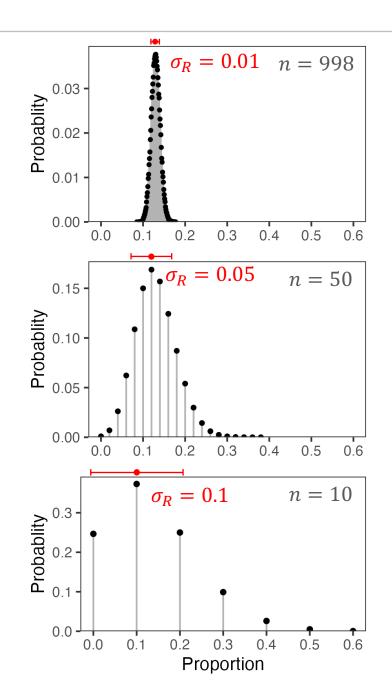
Width of the sampling distribution of a proportion

$$\sigma_R = \sqrt{\frac{p(1-p)}{n}}$$

 Replace an unknown population parameter, p, with the observed estimator, p̂

$$SE_R = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Standard error of a proportion
- *SE_R* estimates the width of the sampling distribution
- Approximate 95% CI is $1.96 \times SE_R$
- However, this doesn't work for small n, or when proportion is close to 0 or 1



Example in R using prop.test

Method provided by Wilson (1927). The interval is asymmetric.

```
> prop.test(1, 10)
```

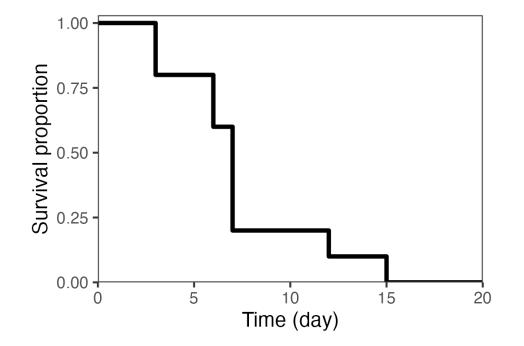
1-sample proportions test with continuity correction

```
data: 1 out of 10, null probability 0.5
X-squared = 4.9, df = 1, p-value = 0.02686
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.005242302 0.458846016
sample estimates:
p
```

0.1

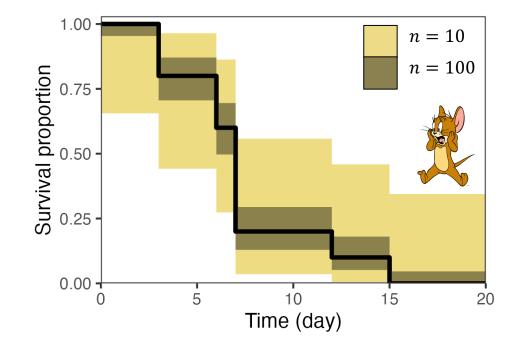
Confidence intervals of a proportion

- Consider survival experiment
 - \square take 10 mice
 - infect with something nasty
 - □ apply treatment
 - count survival proportion over time
- We need errors of proportion!



Confidence intervals of a proportion

- Consider survival experiment
 - $\hfill\square$ take 10 mice
 - $\hfill\square$ infect with something nasty
 - □ apply treatment
 - $\hfill\square$ count survival proportion over time
- 95% Cls
- The bigger sample, the smaller error
- Even when $\hat{p} = 0$, error allows for non-zero proportion
- We have zombie mice!



Beware of small samples!

When you count things, small samples are not very good

• Consider a small number n = 10

	Count C = 10	$\frac{\text{Correlation}}{r = 0.73}$	Proportion $\hat{S} = 3$
95% CI	[4.8, 18.4]	[0.19, 0.93]	[0.10, 0.61]
Half CI as a fraction of the value	68%	51%	71%

• When you do counts, you need n > 30

	Count, propo	Mean, median		
Number	Small	Large	Any	_
Observed variability	Counting statistics	Biology	Biology	
Example	5 mice out of 12	120 cells out of 860	Sample of 5	
What to use	Low-count statistics	Replicates	Replicates	

Bootstrapping

Bootstrapping

Versatile technique used when

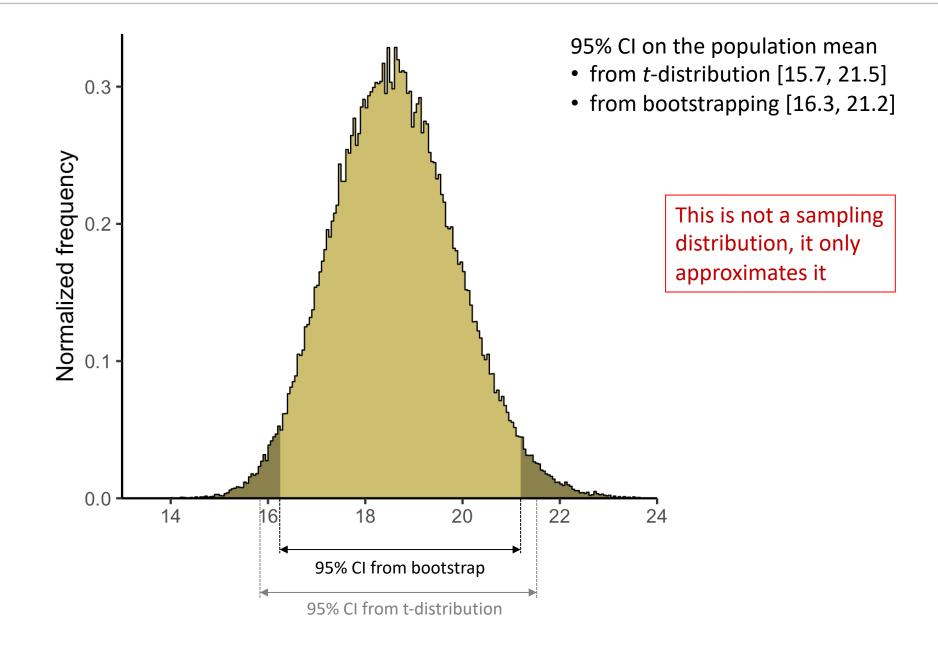
 $\hfill\square$ distribution of the estimator is complicated or unknown

- □ for power calculations
- Approximate sampling distribution from one sample only
- Use random resampling with replacement

19.4	18.2	11.5	17.2	25.7	19.2	21.5	16.7	15.6	27.7	14.3	16.3	M = 18.6	original sample
27.7	18.2	18.2	25.7	11.5	17.2	17.2	25.7	21.5	11.5	14.3	17.2	M = 18.8	
19.2	14.3	19.2	15.6	14.3	14.3	17.2	16.3	19.2	19.2	16.3	21.5	M = 17.2	
14.3	17.2	18.2	18.2	18.2	11.5	14.3	18.2	17.2	19.4	11.5	16.3	M = 16.2	resamples
25.7	18.2	15.6	15.6	19.4	19.2	18.2	19.4	21.5	16.7	14.3	18.2	M = 18.5	
19.2	21.5	16.7	17.2	21.5	18.2	21.5	17.2	21.5	15.6	21.5	21.5	M = 19.4	

- Repeat this many times (e.g. 10⁵) and collect all means
- Build the bootstrap distribution of the mean

Bootstrapping



Confidence intervals in R

Most statistical *test* functions in R provide with confidence intervals.

Quantity	R function
Mean	t.test
Median	wilcox.test
Count	poisson.test
Correlation	cor.test
Proportion	prop.test

How to extract CI limits in R

> prop.test(12, 87)

1-sample proportions test with continuity correction

```
data: 12 out of 87, null probability 0.5
X-squared = 44.184, df = 1, p-value = 2.989e-11
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.07637419 0.23243382
sample estimates:
       р
0.137931
# store test result in a variable
> p <- prop.test(12, 87)
# extract confidence intervals from object p
> ci <- p$conf.int</pre>
# ci is a vector of two elements: lower and upper CI limit
> ci[1]
[1] 0.07637419
> ci[2]
[1] 0.2324338
```

Slides available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html