4. Confidence intervals

“95% of statistics is made up on the spot”

Anonymous
Reminder: 95% confidence interval

- There is a 95% probability that the random interval includes the true mean.

- If you were to repeat the entire experiment many times:
 - 95% of cases the true mean would be within the calculated interval.
 - 5% of cases (1 in 20) it would be outside it (false result).
Confidence interval for count data
Confidence interval for count data

- Standard error of a count, C, is
 \[SE = \sqrt{C} \]

- For example, 5 ± 2 (after rounding up)

- How to find a confidence interval on μ?
 - Exact method: a bit complicated

\[C = 5 \pm 2 \,(SE) \]
Confidence interval for count data: hand waving

Find μ_1 such that k cuts off 2.5% at right

Find μ_2 such that k cuts off 2.5% at left

$\mu_1 = 1.62$

$\mu_2 = 11.67$

$k = 5$

$C = 5^{±7} (95\% \text{ CI})$
Confidence interval for count data: exact method

- Solving equations for Poisson cumulative distribution

```r
> poisson.test(5, conf.level = 0.95)

    Exact Poisson test

data:  5 time base: 1
number of events = 5, time base = 1, p-value = 0.00366
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
  1.623486 11.668332
sample estimates:
  event rate
      5
```
Count errors: example

Small counts

Large counts
Confidence intervals for count data are not integer

- 95% CI for \(C = 5 \) is \([1.6, 11.8]\)
- Shouldn’t the confidence interval be exactly integer?
- Confidence interval is not for the sample count!
- We expect the true mean to be within \([1.6, 11.8]\) with a certain confidence

- The mean in a Poisson process is not integer
- Confidence intervals are for the true mean and are not integer
Confidence interval of the correlation coefficient
Confidence interval of the correlation coefficient

- Pearson’s correlation coefficient \(r \) for a sample of pairs \((x_i, y_i)\)

- It is not enough to say “we find \(r = 0.82 \), therefore our samples are correlated”

- Confidence limits on \(r \) or significance of correlation

\[r = 0.74 \]
Sampling distribution of the correlation coefficient

- Gedankenexperiment
- Consider a population of pairs of numbers \((x_i, y_i)\)
- The (unknown) population correlation coefficient, \(\rho = 0.7\)
- Draw lots of samples of pairs, size \(n\)
- Calculate the correlation coefficient for each sample
- Build a sampling distribution of the correlation coefficient
Sampling distribution of the correlation coefficient

- Sampling distribution of r
- Unknown in analytical form

- Let us transform it into a known distribution

- Fisher’s transformation:

$$z = \frac{1}{2} \ln \frac{1 + r}{1 - r}$$

- Build a sampling distribution of z

Interval containing 95% of samples

Desired fraction 95%

Reject 2.5%

Reject 2.5%
Confidence interval of the correlation coefficient

Confidence interval of r

Desired fraction 95%

Reject 2.5%

Confidence interval of z

Desired fraction 95%

Reject 2.5%

\[
Z = \frac{1}{2} \ln \frac{1 + r}{1 - r}
\]

\[
\mu = Z, \quad \sigma = \frac{1}{\sqrt{n - 3}}
\]
Example: 95% confidence limits on \(r \)

- \(n = 30 \) and \(r = 0.7 \)
- First, find

 \[
 Z = \frac{1}{2} \ln \frac{1 + r}{1 - r} = 0.867
 \]

 \[
 \sigma = \frac{1}{\sqrt{n - 3}} = 0.192
 \]

- \(Z \) is normally distributed
- 95% CI corresponds to \(Z \pm 1.96\sigma \):
 - \(Z_L = Z - 1.96\sigma = 0.490 \)
 - \(Z_U = Z + 1.96\sigma = 1.24 \)
Example: 95% confidence limits on r

- $n = 30$ and $r = 0.7$
- First, find
 \[Z = \frac{1}{2} \ln \frac{1 + r}{1 - r} = 0.867 \]
 \[\sigma = \frac{1}{\sqrt{n - 3}} = 0.192 \]
- Z is normally distributed
- 95% CI corresponds to $Z \pm 1.96\sigma$:
 - $Z_L = Z - 1.96\sigma = 0.490$
 - $Z_U = Z + 1.96\sigma = 1.24$
- Now we find the corresponding limits on r
 \[r = \frac{e^{2Z} - 1}{e^{2Z} + 1} \]
 - $r_L = 0.454$
 - $r_U = 0.847$
- Hence, with 95% confidence, $r = 0.7^{+0.15}_{-0.25}$
How to do this in R

```r
# Need to know r and n

r <- 0.7
n <- 30
Z <- 0.5 * log((1+r) / (1-r))
Z
[1] 0.8673005
sigma <- 1 / sqrt(n - 3)
sigma
[1] 0.1924501
Z95 <- qnorm(0.975)
Z95
[1] 1.959964
Z.limits <- c(Z - Z95 * sigma, Z + Z95 * sigma)
Z.limits
[1] 0.4901053 1.2444958
r.limits <- (exp(2*Z.limits) - 1) / (exp(2*Z.limits) + 1)
r.limits
[1] 0.4543000 0.8467329
```
generate random data (in reproducible way)
> set.seed(47)
> x <- 1:30
> y <- x + rnorm(30, 0, 7)

correlation test to find CI
> cor.test(x, y)

Pearson's product-moment correlation

data: x and y
t = 5.1419, df = 28, p-value = 1.882e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.4494788 0.8450094
sample estimates:
 cor
 0.6968971
Example: 95% CI for correlation with $n = 6$ and $n = 30$

$$r = 0.7$$

$CI = [-0.26, 0.96]$

$CI = [0.45, 0.85]$

$p = 0.12$

$p = 2 \times 10^{-5}$
Confidence interval of a proportion
Confidence interval of a proportion

- Proportion:
 \[\hat{p} = \frac{\hat{S}}{n} = \frac{\text{number of successes}}{\text{sample size}} \]

- Examples:
 - poll results
 - survival experiments
 - counting cells with a property

- Sample proportion, \(\hat{p} \), is an estimator of the (unknown) population proportion, \(p \)

\[
\hat{S} = 4 \\
\circ + \circ = 12 \\
\hat{p} = \frac{4}{12} = 0.33
\]
Sampling distribution of a proportion

- *Gedankenexperiment*
- Population of mice where $p = 13\%$ are immune to a certain disease

- Draw a random sample of size n and find the proportion of immune mice, \hat{p}, in the sample
- Repeat 100,000 times and plot the distribution of \hat{p}

- What kind of distribution is it?
- Hint: every time you select a mouse, it can be either immune or not, with probability p or $1 - p$

- Binomial distribution
 - immune = “success”, probability p
 - not immune = “failure”, probability $1 - p$
- Good! Sampling distribution is known
Sampling distribution of a proportion: scaled binomial

Absolute numbers
- X – binomial random variable
- Mean and standard deviation
 \[\mu = np \]
 \[\sigma = \sqrt{np(1 - p)} \]

Proportion
- $R = X/n$ – scaled binomial random variable
- Mean and standard deviation scaled by n:
 \[\mu_R = p \]
 \[\sigma_R = \sqrt{\frac{p(1 - p)}{n}} \]
Sampling distribution of a proportion

- Width of the sampling distribution of a proportion

\[\sigma_R = \sqrt{\frac{p(1-p)}{n}} \]
Standard error of the mean

Hypothetical experiment
- 100,000 samples of 30 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

\[
\sigma_m = \frac{\sigma}{\sqrt{n}} = 0.9 \text{ g}
\]

Real experiment
- 30 mice
- Measure body mass:
 - 8.7, 13.4, …, 29.2 g
- Find standard error

\[
SE = \frac{SD}{\sqrt{n}} = 0.76 \text{ g}
\]

SE is an approximation of \(\sigma_m \)
Sampling distribution of a proportion

- Width of the sampling distribution of a proportion
 \[\sigma_R = \sqrt{\frac{p(1-p)}{n}} \]

- Replace an unknown population parameter, \(p \), with the observed estimator, \(\hat{p} \)
 \[SE_R = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]

- Standard error of a proportion
- \(SE_R \) estimates the width of the sampling distribution

- Approximate 95% CI is 1.96\(\times \)\(SE_R \)

- However, this doesn’t work for small \(n \), or when proportion is close to 0 or 1
Example in R using prop.test

Method provided by Wilson (1927). The interval is asymmetric.

```r
> prop.test(1, 10)

    1-sample proportions test with continuity correction

data:  1 out of 10, null probability 0.5
X-squared = 4.9, df = 1, p-value = 0.02686
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.005242302 0.458846016
sample estimates:
p
0.1
```
Confidence intervals of a proportion

- Consider survival experiment
 - take 10 mice
 - infect with something nasty
 - apply treatment
 - count survival proportion over time

- We need errors of proportion!
Confidence intervals of a proportion

- Consider survival experiment
 - take 10 mice
 - infect with something nasty
 - apply treatment
 - count survival proportion over time

- 95% CIs
- The bigger sample, the smaller error

- Even when \(\hat{p} = 0 \), error allows for non-zero proportion

- We have zombie mice!
Beware of small samples!

- When you count things, small samples are not very good
- Consider a small number $n = 10$

<table>
<thead>
<tr>
<th></th>
<th>Count $C = 10$</th>
<th>Correlation $r = 0.73$</th>
<th>Proportion $\hat{S} = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>[4.8, 18.4]</td>
<td>[0.19, 0.93]</td>
<td>[0.10, 0.61]</td>
</tr>
<tr>
<td>Half CI as a fraction of the value</td>
<td>68%</td>
<td>51%</td>
<td>71%</td>
</tr>
</tbody>
</table>

- When you do counts, you need $n > 30$
Small and large numbers

<table>
<thead>
<tr>
<th>Number</th>
<th>Count, proportion, correlation</th>
<th>Mean, median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed variability</td>
<td>Counting statistics</td>
<td>Biology</td>
</tr>
<tr>
<td>Example</td>
<td>5 mice out of 12</td>
<td>120 cells out of 860</td>
</tr>
<tr>
<td>What to use</td>
<td>Low-count statistics</td>
<td>Replicates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Large</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample of 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bootstrapping
Bootstrapping

- Versatile technique used when
 - distribution of the estimator is complicated or unknown
 - for power calculations
- Approximate sampling distribution from one sample only
- Use random resampling *with replacement*

<table>
<thead>
<tr>
<th>Original Sample</th>
<th>Resamples</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4 18.2 11.5 17.2 25.7 19.2 21.5 16.7 15.6 27.7 14.3 16.3</td>
<td>27.7 18.2 18.2 25.7 11.5 17.2 17.2 25.7 21.5 11.5 14.3 17.2</td>
<td>18.6</td>
</tr>
<tr>
<td>19.2 14.3 19.2 15.6 14.3 14.3 17.2 16.3 19.2 19.2 16.3 21.5</td>
<td>19.2 14.3 19.2 15.6 14.3 14.3 17.2 16.3 19.2 19.2 16.3 21.5</td>
<td>17.2</td>
</tr>
<tr>
<td>14.3 17.2 18.2 18.2 18.2 11.5 14.3 18.2 17.2 19.4 11.5 16.3</td>
<td>14.3 17.2 18.2 18.2 18.2 11.5 14.3 18.2 17.2 19.4 11.5 16.3</td>
<td>16.2</td>
</tr>
<tr>
<td>25.7 18.2 15.6 15.6 19.4 19.2 18.2 19.4 21.5 16.7 14.3 18.2</td>
<td>25.7 18.2 15.6 15.6 19.4 19.2 18.2 19.4 21.5 16.7 14.3 18.2</td>
<td>18.5</td>
</tr>
<tr>
<td>19.2 21.5 16.7 17.2 21.5 18.2 21.5 17.2 21.5 15.6 21.5 21.5</td>
<td>19.2 21.5 16.7 17.2 21.5 18.2 21.5 17.2 21.5 15.6 21.5 21.5</td>
<td>19.4</td>
</tr>
</tbody>
</table>

- Repeat this many times (e.g. 10^5) and collect all means
- Build the bootstrap distribution of the mean
Bootstrapping

95% CI on the population mean
• from t-distribution [15.7, 21.5]
• from bootstrapping [16.3, 21.2]

This is not a sampling distribution, it only approximates it.
Most statistical test functions in R provide with confidence intervals.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>R function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td><code>t.test</code></td>
</tr>
<tr>
<td>Median</td>
<td><code>wilcox.test</code></td>
</tr>
<tr>
<td>Count</td>
<td><code>poisson.test</code></td>
</tr>
<tr>
<td>Correlation</td>
<td><code>cor.test</code></td>
</tr>
<tr>
<td>Proportion</td>
<td><code>prop.test</code></td>
</tr>
</tbody>
</table>
How to extract CI limits in R

```r
> prop.test(12, 87)

1-sample proportions test with continuity correction

data:  12 out of 87, null probability 0.5
X-squared = 44.184, df = 1, p-value = 2.989e-11
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
  0.07637419 0.23243382
sample estimates:
p
0.137931

# store test result in a variable
> p <- prop.test(12, 87)

# extract confidence intervals from object p
> ci <- p$conf.int

# ci is a vector of two elements: lower and upper CI limit
> ci[1]
[1] 0.07637419
> ci[2]
[1] 0.2324338
```
Slides available at
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html