4. Confidence intervals

“95% of statistics is made up on the spot”

Anonymous



Confidence interval for count data



Confidence interval for count data

Standard error of a count, C, is
SE =+/C

For example 5 + 2 (after rounding up)

How to find a confidence interval on u?
Exact method: a bit complicated

C =5+ 2 (SE)



Confidence interval for count data: hand waving

= 162 : Find pq such that
k=5 k cuts off 2.5% at right
2.5%
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Find u, such that
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C =54 2(SE)
C = 5% (95% Cl)



Confidence interval for count data: exact method

= Solving equations for Poisson cumulative distribution

> poisson.test(5, conf.level = 0.95)
Exact Poisson test

data: 5 time base: 1
number of events = 5, time base = 1, p-value = 0.00366
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:

1.623486 11.668332
sample estimates:
event rate
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Count errors: example
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Confidence intervals for count data are not integer

= 95% Clfor C = 5is[1.6,11.8]

160 ] . . . .
= Shouldn’t the confidence interval be l Poisson distribution
exactly integer? l ®  Horse kick data
= Confidence interval is not for the sample 120 -
count! u=0.7
= We expect the true mean to be within I
[1.6, 11.8] with a certain confidence e t
S 80-
O
= The mean in a Poisson process is not
integer 40 -
T
= Confidence intervals are for the true ?
mean and are not integer
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Confidence interval of the correlation
coefficient



Confidence interval of the correlation coefficient

= Pearson’s correlation coefficient r for a

sample of pairs (x;, y;) ] r=082
= It is a number between -1 and 1 .
1 . .o ...
= Itis not enough to say “we findr = 0.82, > o- o o o0
therefore our samples are correlated” o ®
-1 e® u .
= Confidence limits on r or significance of 27 ° o ’
correlation




Sampling distribution of the correlation coefficient

= Gedankenexperiment

= Consider a population of pairs of
numbers (x;, V;)

= The (unknown) population correlation

coefficient, p = 0.7

= Draw lots of samples of pairs, size n

= Calculate the correlation coefficient
for each sample

= Build a sampling distribution of the
correlation coefficient
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Sampling distribution of the correlation coefficient

= Sampling distribution of r
= Unknown in analytical form

= Let us transform it into a known
distribution

s Fisher’s transformation:

1+7r
1—r

Z—ll
_Zn

= Build a sampling distribution of Z
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Confidence interval of the correlation coefficient

Sampling distribution of r
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Example: 95% confidence limits on r

=n=30andr = 0.7 2.0
= First, find
1 147 T
Z =—=In = 0.867 =
2 1-r 2 ol
q) .
1 Q
o= = 0.192
Vn—3 051 2.5%
= Z is normally distributed 00+

= 95% Cl corresponds to Z + 1.960:
0Z, =Z—1960 = 0.490
0Zy =27+ 1960 = 1.24



Example: 95% confidence limits on r

=n=30andr = 0.7 2.0
= First, find
1 147 T
Z =—=In = 0.867 =
2 1-r 2 40
(O]
1 Q
o= = 0.192
Vn—3 051 2.5%
= Z is normally distributed 00+

= 95% Cl corresponds to Z + 1.960:
0Z, =Z—1960 = 0.490
0Zy =27+ 1960 = 1.24 44

= Now we find the corresponding limits on r

e?? —1
ez 41
(| T'L = 0454
01y = 0.847
0.15

= Hence, with 95% confidence, r = 0.77932 0 0

r




How to do this in R

>r <- 0.7

> n <- 30

> Z <- 0.5 * log((1+r) / (1-r))

> Z

[1] ©.8673005

> sigma <- 1 / sqrt(n - 3)

> sigma

[1] ©.1924501

> Z95 <- gnorm(0.975)

> Z95

[1] 1.959964

> Z.1limits <- c(Z - Z95 * sigma, Z + Z95 * sigma)
> Z.limits

[1] ©.4901053 1.2444958

> r.limits <- (exp(2*Z.limits) - 1) / (exp(2*Z.limits) + 1)
> r.limits

[1] ©.4543000 0.8467329
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How to do this in R: the easy way

# generate random data (in reproducible way)
> set.seed(47)

> X <- 1:30

>y <- X + rnorm(30, 0, 7)

# correlation test to find CI

> cor.test(x, y)

Pearson's product-moment correlation

data: x and y
t = 5.1419, df = 28, p-value = 1.882e-05

alternative hypothesis: true correlation is not equal to ©

95 percent confidence interval:
0.4494788 0.8450094
sample estimates:
cor
0.6968971
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Example: 95% Cl for correlation withn = 6 and n = 30

r=20.7
CI = [-0.26,0.96] CI = [0.45,0.85]
p =0.12 p =2x107°
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Confidence interval of a proportion



Confidence interval of a proportion

= Proportion:

A

S number of successes

P n sample size

= Examples:
o poll results
0 survival experiments
0 counting cells with a property

= Sample proportion, P, is an estimator
of the (unknown) population

proportion, p
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Sampling distribution of a proportion

Gedankenexperiment

Consider a population of mice where p = 13% are
immune to a certain disease

Draw a random sample of size n and find the
proportion of immune mice, p, in the sample

Repeat 100,000 times and plot the distribution of p

What kind of distribution is it?

Hint: every time you select a mouse, it can be
either immune or not, with probabilitypor1 —p

Binomial distribution

o immune = “success”, probability p

o not immune = “failure”, probability 1 — p
Good! Sampling distribution is known
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Sampling distribution of a proportion: scaled binomial

Absolute numbers } n =998
= X —binomial random variable = 03] :
= Mean and standard deviation S 0.021
S :e
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Sampling distribution of a proportion

= Width of the sampling distribution of a proportion 0.01 . _ 993
0.03 1 L 4
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Reminder from lecture 2

Hypothetical experiment
. 100,000 samples of 30 mice
. Build a distribution of sample means

. Width of this distribution is the true
uncertainty of the mean

=09¢g

Om

B

Real experiment

= 30 mice

. Measure body mass:
99,1459, .., 33.8¢g
. Find standard error

SE—SD-—087
_\/—ﬁ_ ) g

SE isan approximation of om

Standard error of the mean
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Sampling distribution of a proportion

= Width of the sampling distribution of a Y R 0.01  — 998
proportion _ 003 %
= 8
8 0.02 41 E:
_ |p(1—p) o i
Op = |7 B 501+ S

" it
0.00 -

= Replace an unknown population parameter, 00 01 02 03 04 05 06

p, with the observed estimator, p 0.16 - e 0r =005 n=50
20.12 !
5 [ ]
SER = 3 0.08- !
o .
o °
0.04 1 .
= Standard error of a proportion oo _,' Voue
= SER estimates the width of the sampling ~ 00 01 02 03 04 05 06
distribution 5 ? op =01 n =10
2. 0.
= Approximate 95% Cl is 1.96 XSER § 0.2
o
QO 0.1 .
= However, this doesn’t work for small n, or ool ! . .
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when proportion is close to 0 or 1 _
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Example in R using prop.test

> prop.test(1, 10)
l-sample proportions test with continuity correction

data: 1 out of 10, null probability 0.5
X-squared = 4.9, df = 1, p-value = 0.02686
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.005242302 0.458846016

sample estimates:

P
0.1
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Confidence intervals of a proportion

= Consider survival experiment
0 take 10 mice
0 infect with something nasty
o apply treatment
0 count survival proportion over time

= We need errors of proportion!
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Confidence intervals of a proportion

= Consider survival experiment
0 take 10 mice
0 infect with something nasty
o apply treatment
o count survival proportion over time

= 95% Cls using Wald method
= The bigger sample, the smaller error

= Even when p = 0, error allows for
non-zero proportion

= We have zombie mice!
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Beware of small samples!

= When you count things, small samples are not very good
= Consider a small numbern = 10

Count Correlation Proportion
r=0.73 $=3
95% Cl [4.8,18.4] [0.19,0.93] [0.10,0.61]
Half Cl as a fraction 68% 51% 71%
of the value

= When you do counts, you need n > 30
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Bootstrapping



Bootstrapping

= Versatile technique used when
o distribution of the estimator is complicated or unknown
o for power calculations
= Approximate sampling distribution from one sample only

= Use random resampling with replacement

19.4 18.2 115 17.2 25.7 19.2 21.5 16.7 15.6 27.7 143 163 M = 18.6 original sample

27.7 18.2 18.2 25.7 11.5 17.2 17.2 25.7 21.5 115 143 172 M =188
19.2 143 19.2 15.6 143 143 17.2 163 192 19.2 163 215 M =172
143 17.2 18.2 18.2 18.2 11.5 143 182 17.2 194 115 163 M =16.2 resamples
25.7 18.2 15.6 15.6 194 19.2 182 194 215 16.7 143 182 M =185
19.2 215 16.7 17.2 21.5 18.2 215 172 215 15.6 215 215 M =194

= Repeat this many times (e.g. 10°) and collect all means
= Build the bootstrap distribution of the mean
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Bootstrapping

95% Cl on the population mean
0.3 e from t-distribution [15.7, 21.5]
' e from bootstrapping [16.3, 21.2]
>
(@)
S
= 0.2 - This is not a sampling
qq:J distribution, it only
§ approximates it
=
S
o -
> 0.1
0.0

14 16 18 20 22 24

A
Y.

95% Cl from bootstrap

A
\ 4

95% Cl from t-distribution
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Confidence intervals in R

Most statistical test functions in R provide with confidence intervals

Quantity R function
Mean t.test
Median wilcox.test
Count poisson.test
Correlation cor.test
Proportion prop.test
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How to extract Cl limits in R

> prop.test(12, 87)
1l-sample proportions test with continuity correction

data: 12 out of 87, null probability 0.5
X-squared = 44.184, df = 1, p-value = 2.989%e-11
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.07637419 0.23243382

sample estimates:

p
0.137931

store test result in a variable

p <- prop.test(12, 87)

extract confidence intervals from object p

ci <- p$conf.int

ci is a vector of two elements: lower and upper CI limit

> ci[1]

[1] ©0.07637419

> ci[2]

[1] ©.2324338 33

H v H v H=



Hand-outs available at
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html



