

4. Confidence intervals

“95% of statistics is made up on the spot”

Anonymous

Confidence interval for count data

Confidence interval for count data

- Standard error of a count, C , is

$$SE = \sqrt{C}$$

- For example 5 ± 2 (after rounding up)
- How to find a confidence interval on μ ?
- Exact method: a bit complicated

$$C = 5 \pm 2 \text{ (SE)}$$

Confidence interval for count data: hand waving

Confidence interval for count data: exact method

- Solving equations for Poisson cumulative distribution

```
> poisson.test(5, conf.level = 0.95)
```

Exact Poisson test

data: 5 time base: 1

number of events = 5, time base = 1, p-value = 0.00366

alternative hypothesis: true event rate is not equal to 1

95 percent confidence interval:

1.623486 11.668332

sample estimates:

event rate

5

Count errors: example

Confidence intervals for count data are not integer

- 95% CI for $C = 5$ is $[1.6, 11.8]$
- Shouldn't the confidence interval be exactly integer?
- Confidence interval is not for the sample count!
- We expect the *true mean* to be within $[1.6, 11.8]$ with a certain confidence
- The mean in a Poisson process is **not** integer
- Confidence intervals are for the true mean and are not integer

Confidence interval of the correlation coefficient

Confidence interval of the correlation coefficient

- Pearson's correlation coefficient r for a sample of pairs (x_i, y_i)
- It is a number between -1 and 1
- It is not enough to say “we find $r = 0.82$, therefore our samples are correlated”
- Confidence limits on r **or** significance of correlation

Sampling distribution of the correlation coefficient

- *Gedankenexperiment*
- Consider a population of pairs of numbers (x_i, y_i)
- The (unknown) population correlation coefficient, $\rho = 0.7$
- Draw lots of samples of pairs, size n
- Calculate the correlation coefficient for each sample
- Build a sampling distribution of the correlation coefficient

Sampling distribution of the correlation coefficient

- Sampling distribution of r
- Unknown in analytical form
- Let us transform it into a known distribution
- Fisher's transformation:
- Build a sampling distribution of Z

Confidence interval of the correlation coefficient

Sampling distribution of r

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r}$$

Sampling distribution of Z

$$\mu = \hat{Z}, \quad \sigma = \frac{1}{\sqrt{n-3}}$$

Example: 95% confidence limits on r

- $n = 30$ and $r = 0.7$
- First, find

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.867$$

$$\sigma = \frac{1}{\sqrt{n-3}} = 0.192$$

- Z is normally distributed
- 95% CI corresponds to $Z \pm 1.96\sigma$:
 - $Z_L = Z - 1.96\sigma = 0.490$
 - $Z_U = Z + 1.96\sigma = 1.24$

Example: 95% confidence limits on r

- $n = 30$ and $r = 0.7$

- First, find

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.867$$

$$\sigma = \frac{1}{\sqrt{n-3}} = 0.192$$

- Z is normally distributed
- 95% CI corresponds to $Z \pm 1.96\sigma$:
 - $Z_L = Z - 1.96\sigma = 0.490$
 - $Z_U = Z + 1.96\sigma = 1.24$
- Now we find the corresponding limits on r

$$r = \frac{e^{2Z} - 1}{e^{2Z} + 1}$$

- $r_L = 0.454$
- $r_U = 0.847$

- Hence, with 95% confidence, $r = 0.7^{+0.15}_{-0.25}$

How to do this in R

```
> r <- 0.7
> n <- 30
> Z <- 0.5 * log((1+r) / (1-r))
> Z
[1] 0.8673005
> sigma <- 1 / sqrt(n - 3)
> sigma
[1] 0.1924501
> Z95 <- qnorm(0.975)
> Z95
[1] 1.959964
> Z.limits <- c(Z - Z95 * sigma, Z + Z95 * sigma)
> Z.limits
[1] 0.4901053 1.2444958
> r.limits <- (exp(2*Z.limits) - 1) / (exp(2*Z.limits) + 1)
> r.limits
[1] 0.4543000 0.8467329
```

How to do this in R: the easy way

```
# generate random data (in reproducible way)
> set.seed(47)
> x <- 1:30
> y <- x + rnorm(30, 0, 7)
# correlation test to find CI
> cor.test(x, y)
```

Pearson's product-moment correlation

```
data: x and y
t = 5.1419, df = 28, p-value = 1.882e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4494788 0.8450094
sample estimates:
cor
0.6968971
```

Example: 95% CI for correlation with $n = 6$ and $n = 30$

$$r = 0.7$$

$$CI = [-0.26, 0.96]$$
$$p = 0.12$$

$$CI = [0.45, 0.85]$$
$$p = 2 \times 10^{-5}$$

Confidence interval of a proportion

Confidence interval of a proportion

- Proportion:

$$\hat{p} = \frac{\hat{S}}{n} = \frac{\text{number of successes}}{\text{sample size}}$$

- Examples:

- poll results
- survival experiments
- counting cells with a property

- Sample proportion, \hat{p} , is an estimator of the (unknown) population proportion, p

- $\hat{S} = 4$

- + ● $n = 12$

$$\hat{p} = \frac{4}{12} = 0.33$$

Sampling distribution of a proportion

- *Gedankenexperiment*
- Consider a population of mice where $p = 13\%$ are immune to a certain disease
- Draw a random sample of size n and find the proportion of immune mice, \hat{p} , in the sample
- Repeat 100,000 times and plot the distribution of \hat{p}
- What kind of distribution is it?
- Hint: every time you select a mouse, it can be either immune or not, with probability p or $1 - p$
- Binomial distribution
 - immune = “success”, probability p
 - not immune = “failure”, probability $1 - p$
- Good! Sampling distribution is known

Sampling distribution of a proportion: scaled binomial

Absolute numbers

- X – binomial random variable
- Mean and standard deviation

$$\mu = np$$

$$\sigma = \sqrt{np(1 - p)}$$

Proportion

- $R = X/n$ – scaled binomial random variable
- Mean and standard deviation scaled by n :

$$\mu_R = p$$

$$\sigma_R = \sqrt{\frac{p(1 - p)}{n}}$$

Sampling distribution of a proportion

- Width of the sampling distribution of a proportion

$$\sigma_R = \sqrt{\frac{p(1-p)}{n}}$$

Reminder from lecture 2

Standard error of the mean

Hypothetical experiment

- 100,000 samples of 30 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = 0.9 \text{ g}$$

Real experiment

- 30 mice
- Measure body mass:
9.9, 14.9, ..., 33.8 g
- Find standard error

$$SE = \frac{SD}{\sqrt{n}} = 0.87 \text{ g}$$

SE is an approximation of σ_m

Sampling distribution of a proportion

- Width of the sampling distribution of a proportion

$$\sigma_R = \sqrt{\frac{p(1-p)}{n}}$$

- Replace an unknown population parameter, p , with the observed estimator, \hat{p}

$$SE_R = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Standard error of a proportion
- SE_R **estimates** the width of the sampling distribution
- Approximate 95% CI is $1.96 \times SE_R$
- However, this doesn't work for small n , or when proportion is close to 0 or 1

Example in R using prop.test

```
> prop.test(1, 10)
```

```
1-sample proportions test with continuity correction
```

```
data: 1 out of 10, null probability 0.5
```

```
X-squared = 4.9, df = 1, p-value = 0.02686
```

```
alternative hypothesis: true p is not equal to 0.5
```

```
95 percent confidence interval:
```

```
0.005242302 0.458846016
```

```
sample estimates:
```

```
p
```

```
0.1
```

Confidence intervals of a proportion

- Consider survival experiment
 - take 10 mice
 - infect with something nasty
 - apply treatment
 - count survival proportion over time
- We need errors of proportion!

Confidence intervals of a proportion

- Consider survival experiment
 - take 10 mice
 - infect with something nasty
 - apply treatment
 - count survival proportion over time
- 95% CIs using Wald method
- The bigger sample, the smaller error
- Even when $\hat{p} = 0$, error allows for non-zero proportion
- We have zombie mice!

Beware of small samples!

- When you count things, small samples are not very good
- Consider a small number $n = 10$

	Count	Correlation $r = 0.73$	Proportion $\hat{S} = 3$
95% CI	[4.8, 18.4]	[0.19, 0.93]	[0.10, 0.61]
Half CI as a fraction of the value	68%	51%	71%

- When you do counts, you need $n > 30$

Bootstrapping

Bootstrapping

- Versatile technique used when
 - distribution of the estimator is complicated or unknown
 - for power calculations
- Approximate sampling distribution from one sample only
- Use random resampling *with replacement*

19.4	18.2	11.5	17.2	25.7	19.2	21.5	16.7	15.6	27.7	14.3	16.3	$M = 18.6$	original sample
27.7	18.2	18.2	25.7	11.5	17.2	17.2	25.7	21.5	11.5	14.3	17.2	$M = 18.8$	
19.2	14.3	19.2	15.6	14.3	14.3	17.2	16.3	19.2	19.2	16.3	21.5	$M = 17.2$	
14.3	17.2	18.2	18.2	18.2	11.5	14.3	18.2	17.2	19.4	11.5	16.3	$M = 16.2$	
25.7	18.2	15.6	15.6	19.4	19.2	18.2	19.4	21.5	16.7	14.3	18.2	$M = 18.5$	
19.2	21.5	16.7	17.2	21.5	18.2	21.5	17.2	21.5	15.6	21.5	21.5	$M = 19.4$	
...													

- Repeat this many times (e.g. 10^5) and collect all means
- Build the bootstrap distribution of the mean

Bootstrapping

Confidence intervals in R

Most statistical test functions in R provide with confidence intervals

Quantity	R function
Mean	t.test
Median	wilcox.test
Count	poisson.test
Correlation	cor.test
Proportion	prop.test

How to extract CI limits in R

```
> prop.test(12, 87)
```

```
1-sample proportions test with continuity correction
```

```
data: 12 out of 87, null probability 0.5
```

```
X-squared = 44.184, df = 1, p-value = 2.989e-11
```

```
alternative hypothesis: true p is not equal to 0.5
```

```
95 percent confidence interval:
```

```
0.07637419 0.23243382
```

```
sample estimates:
```

```
    p
```

```
0.137931
```

```
# store test result in a variable
```

```
> p <- prop.test(12, 87)
```

```
# extract confidence intervals from object p
```

```
> ci <- p$conf.int
```

```
# ci is a vector of two elements: lower and upper CI limit
```

```
> ci[1]
```

```
[1] 0.07637419
```

```
> ci[2]
```

```
[1] 0.2324338
```

Hand-outs available at

https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html