2. Measurement errors; statistical estimators

"Errors using inadequate data are much less than those using no data at all"

Charles Babbage

Example

- Take one cuvette with bacterial culture
- Measure optical density (OD600)
- Result: 0.37
- Reading error
- Take five cuvettes and find mean OD600
- Results 0.42
- Sampling error
- These are examples of measurement errors

Measurement errors

Systematic and random errors

Systematic errors

your mistakes

- Incorrect instrument calibration
- Change in experimental conditions
- Pipetting errors

Random errors

statistics sucks

- Reading errors
- Sampling errors
- Intrinsic variability

YOU NEED REPLICATES

Reading error

- The reading error is ±half of the smallest division
- Example: 23±0.5 mm from a ruler

- Beware of digital instruments that sometimes give readings much better than their real accuracy
- Read the instruction manual!

 Reading error does not take into account biological variability

Random measurement error

- Determine the strength of oxalic acid in a sample
- Method: sodium hydroxide titration
- Uncertainties contributing to the final result
 - volume of the acid sample
 - judgement at which point acid is neutralized
 - volume of NaOH solution used at this point
 - accuracy of NaOH concentration
 - weight of solid NaOH dissolved
 - volume of water added

- Each of these uncertainties adds a random error to the final result
- Measurement errors are normally distributed

Counting error

- Dilution plating of bacteria
- Found C = 10 colonies
- Counting statistics: Poisson distribution

 $\sigma=\sqrt{\mu}$

 Use standard deviation as error estimate to obtain the *standard error of the count*

$$S = \sqrt{C} = \sqrt{10} \approx 3$$

 $C = 10 \pm 3$

Counting error

- Gedankenexperiment
- Measure counts on 10,000 plates

C_i	Count from plate <i>i</i>
$S_i = \sqrt{C_i}$	lts error
μ	Unknown population mean
$\sigma=\sqrt{\mu}$	Unknown population SD

- Counting errors, S_i, are similar, but not identical, to σ
- C_i is an estimator of μ
- S_i is an estimator of σ

Exercise: is Dundee a murder capital of Scotland?

- On 2 October 2013 *The Courier* published an article "Dundee is murder capital of Scotland"
- Data in the article (2012/2013):

City	Murders	Per 100,000
Dundee	6	4.1
Glasgow	19	3.2
Aberdeen	2	0.88
Edinburgh	2	0.41

- Compare Dundee and Glasgow
- Find errors on murder rates
- Hint: find errors on murder count first

Exercise: is Dundee a murder capital of Scotland?

- and apply them to murder rate
 - $\Delta R_D = 4.1 \times 0.41 = 1.7$ $\Delta R_G = 3.2 \times 0.23 = 0.74$

Exercise: is Dundee a murder capital of Scotland?

City	Murders	Per 100,000
Dundee	6	4.1
Glasgow	19	3.2
Aberdeen	2	0.88
Edinburgh	2	0.41

95% confidence intervals (Lecture 4) p-values from chi-square test vs Dundee

Measurement errors: summary

- Random measurement errors are expected to be normally distributed
- Some errors can be estimated directly

 reading (scale, gauge, digital read-out)
 counting
- Other uncertainties require replicates (a sample)
 this introduces sampling error

Population and sample

Population and sample

- Terms nicked from social sciences
- Most biological experiments involve sample selection
- Terms "population" and "sample" are not always literal

What is a sample?

 The term "sample" has different meanings in biology and statistics

 Biology: sample is a specimen, e.g., a cell culture you want to analyse

• In these talks: x_1, x_2, \dots, x_n

Population and sample

A **parameter** describes a population

A statistical estimator

(statistic) describes a sample

A statistical estimator approximates the corresponding parameter

Sampling uncertainty

Sample size

Dilution plating experiment

What is the sample size?

n = 1

This sample consists of one measurement: $x_1 = 10$

10 colonies

Statistical estimators

"The average human has one breast and one testicle"

Des MacHale

What is a statistical estimator?

"Right and lawful rood^{*}" from *Geometrei*, by Jacob Köbel (Frankfurt 1575) Stand at the door of a church on a Sunday and bid 16 men to stop, tall ones and small ones, as they happen to pass out when the service is finished; then make them put their left feet one behind the other, and the length thus obtained shall be a right and lawful rood to measure and survey the land with, and the 16th part of it shall be the right and lawful foot.

Over 400 years ago Köbel:

- introduced random sampling from a population
- required a representative sample
- defined standardized units of measure
- used 16 replicates to minimize random error
- calculated an estimator: the sample mean

Example

- Weight of 7 mice
- This is a sample
- We can find
 - □ mean = 19.2 g
 - □ median = 18.7 g
 - \square standard deviation = 4.4 g
 - \square standard error = 1.7 g
 - \Box interquartile range = 6.0 g
- These are examples of statistical estimators

No.	Weight (g)
1	13.6
2	16.1
3	25.1
4	24.8
5	16.6
6	19.8
7	18 7

Statistical estimators

 Statistical estimator is a sample attribute used to estimate a population parameter

From a sample x_1, x_2, \dots, x_n we can find

$$M = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \text{mean}$$

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - M)^2}$$

standard deviation

median, proportion, correlation, ...

Mean vs median

Median

- More appropriate for skewed distributions
- Not sensitive to outliers

Mean

- Better estimate of the central value
- Statistical tests on the mean (e.g. t-test) are more power full than non-parametric tests

If your data are symmetric, use mean

Standard deviation

- Standard deviation is a measure of spread of data points
- Idea:
 - calculate the mean
 - $\hfill\square$ find deviations from the mean
 - $\hfill\square$ get rid of negative signs
 - $\hfill\square$ combine them together

Standard deviation

 Standard deviation is a measure of spread of data points

Idea:

calculate the mean

□ find deviations from the mean□ get rid of negative signs

□ combine them together

Standard deviation of x₁, x₂, ..., x_n

$$SD_n = \sqrt{\frac{1}{n} \sum_{i} (x_i - M)^2}$$

$$SD_{n-1} = \sqrt{\frac{1}{n-1}\sum_{i}(x_i - M)^2}$$
 $\qquad SD_{n-1}^2$ estimates true variance better than SD_n^2

Sampling distribution

Population of mice with normal body weight: $\mu = 20$ g, $\sigma = 5$ g Draw lots of samples of size n = 5

Central limit theorem

Hypothetical experiment

- 100,000 samples of 5 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = 2.2 \text{ g}$$

Real experiment

- 5 mice
- Measure body mass:

7.9, 14.4, 16.4, 21.7, 22.8 g

Find standard error

 $SE = \frac{SD}{\sqrt{n}} = 2.7 \text{ g}$

SE is an approximation of σ_m

Hypothetical experiment

- 100,000 samples of 30 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = 0.9 \text{ g}$$

Real experiment

- 30 mice
- Measure body mass:

9.9, 14.9, ..., 33.8 g

Find standard error

$$SE = \frac{SD}{\sqrt{n}} = 0.87 \text{ g}$$

SE is an approximation of σ_m

Standard deviation and standard error

Standard deviation	Standard error	
$SD = \sqrt{\frac{1}{n-1}\sum_{i}(x_i - M)^2}$	$SE = \frac{SD}{\sqrt{n}}$	
Measure of dispersion in the sample	Error of the mean	
Estimates the true standard deviation in the population, $\boldsymbol{\sigma}$	Estimates the width (standard deviation) of the distribution of the sample means	
Does not depend on sample size	Gets smaller with increasing sample size	

Correlation coefficient

• Two samples: x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right) = \frac{1}{n-1} \sum_{i=1}^{n} Z_{xi} Z_{yi}$$

where Z is a "Z-score"

Correlation doesn't mean causation!

r = 0.993

tylervigen.com

tylervigen.com

Statistical estimators

Central point

Mean

Geometric mean Harmonic mean **Median**

Mode Trimemod mod

Trimmed mean

Dispersion

Variance Standard deviation Standard error Mean deviation Range Interquartile range Mean difference

Symmetry

Skewness

Kurtosis

Dependence

Pearson's correlation Rank correlation

Distance

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html