Everything you always wanted to know about statistics*

Marek Gierlinski Division of Computational Biology

Slides available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html

*but were afraid to ask

We collaborate on various types of projects

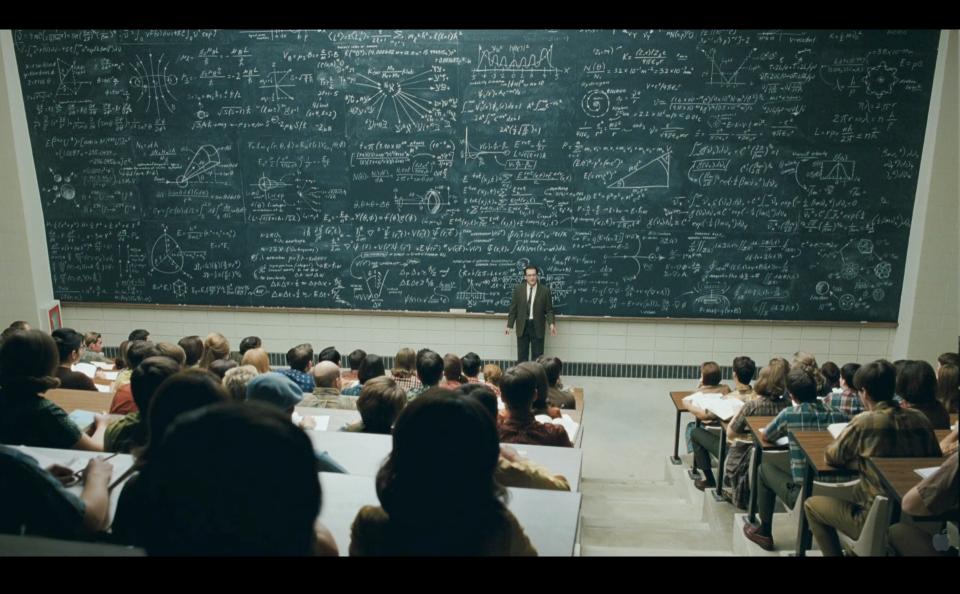
Anything involving data analysis

Marek Gierlinski

James Abbott

Pete Thorpe

http://www.compbio.dundee.ac.uk/dag.html



1. Probability distributions

Random variables Normal, log-normal, Poisson, Binomial

2. Errors and statistical estimators

Measurement and random errors Population and sample Standard deviation, standard error

3. Confidence intervals 1

Sampling distribution Confidence interval of the mean, median

4. Confidence intervals 2

Confidence interval of count data, correlation, proportion

5. Data presentation

How to make a good plot

6. Introduction to p-values

Null hypothesis, statistical test, p-value Fisher's test

7. Contingency tables

Chi-square test G-test

8. T-test

One- and two-sample, paired One-sample variance test

9. ANOVA

One-way

Two-way

10. Non-parametric methods

Mann-Whitney, Wilcoxon signed-rank Kruskal-Wallis, Kolmogorov-Smirnov

11. Statistical power

Effect size Power in t-test Power in ANOVA

12. Multiple test corrections

False discovery rate Benjamini-Hochberg limit

13. Linear models

Regression, design matrix, dummy variables, models with multiple variables

14. What's wrong with p-values?

A lot

1. Probability distributions

"Misunderstanding of probability may be the greatest of all general impediments to scientific literacy"

Stephen Jay Gould

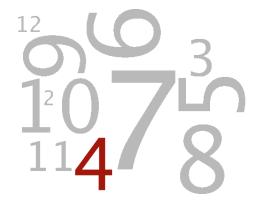
Example

 Experiment: estimate bacterial concentration using a spectrophotometer

- 6 replicates
- Find the following OD600
 0.37 0.34 0.41 0.40 0.30 0.33

- Experimental result is a random variable
- It follows a certain probability distribution

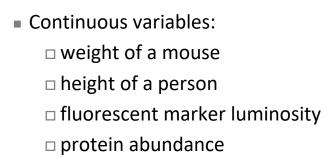
Random variable: random numbers



Discrete and continuous random variables

Discrete variables:

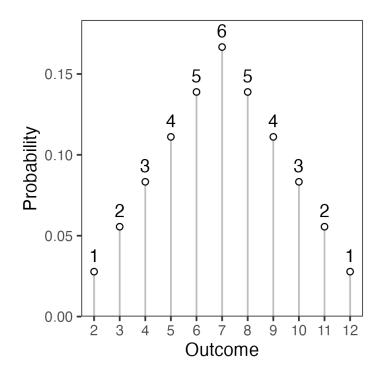
sum of 2 dice (2, 3, 4, ..., 12)
categorical outcome (small, medium, large)
number of mice (in a survival experiment)



Probability distribution (2 dice)

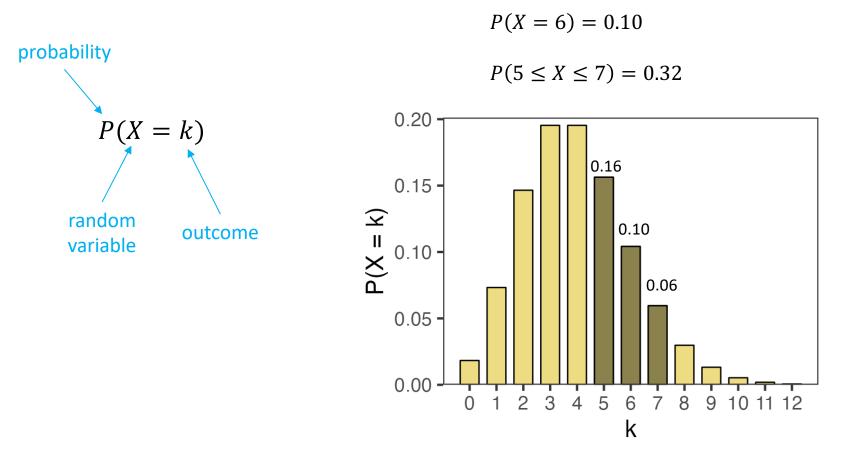
- Assigns a probability to each of the possible outcomes
- Throwing 2 dice

Outcome	Combinations
2	1+1
3	1+2, 2+1
4	1+3, 2+2, 3+1
5	1+4, 2+3, 3+2, 4+1
6	1+5, 2+4, 3+3, 4+2, 5+1
7	1+6, 2+5, 3+4, 4+3, 5+2, 6+1
8	2+6, 3+5, 4+4, 5+3, 6+2
9	3+6, 4+5, 5+4, 6+3
10	4+6, 5+5, 6+4
11	5+6, 6+5
12	6+6

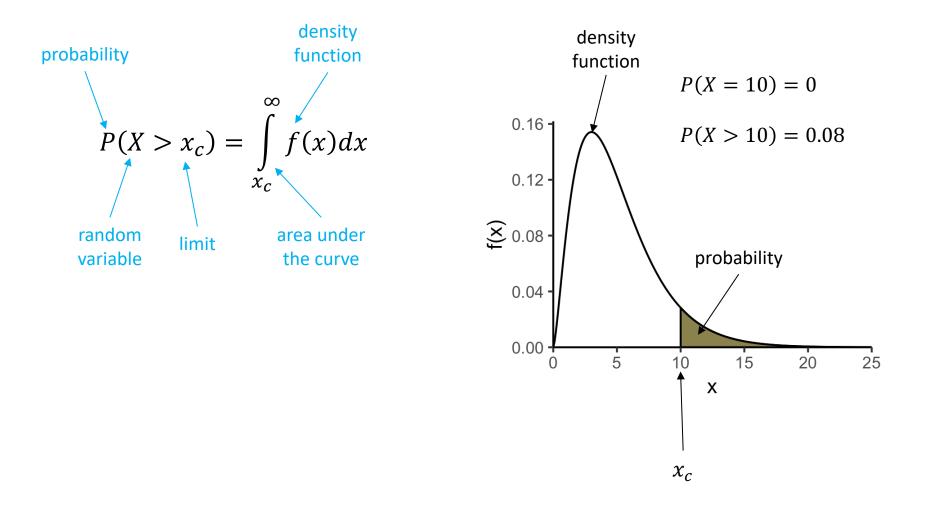


There are 36 combinations possible

Discrete random variable



Continuous random variable



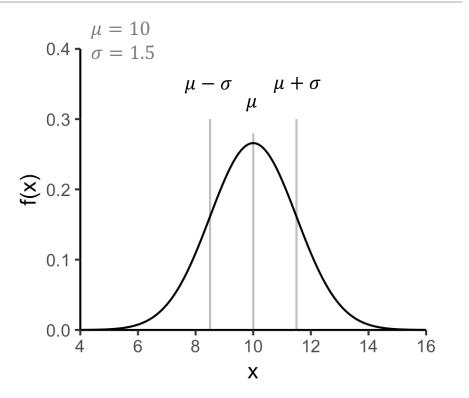
Normal distribution (Gaussian)

Normal distribution

Normal (or Gaussian) probability distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

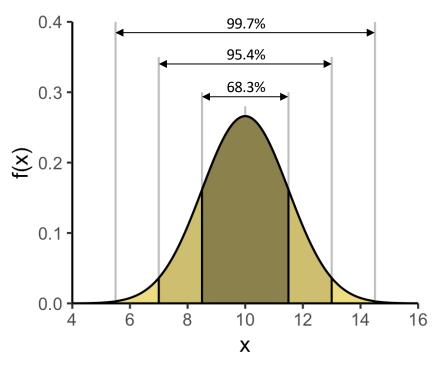
- $\square \mu$ mean
- $\square \, \sigma$ standard deviation
- σ^2 is called variance
- It is called "normal" as it often appears in nature



Normal distribution: a few numbers

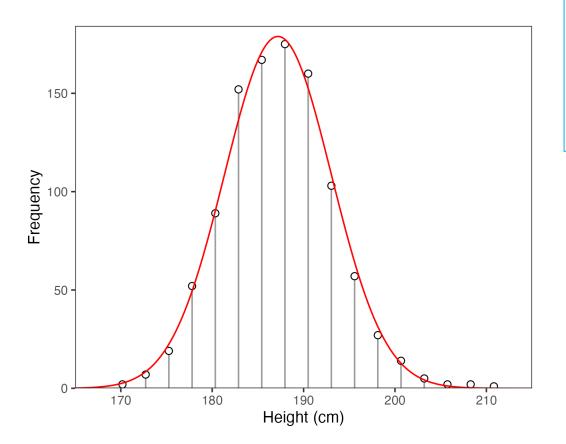
- Area under the curve = probability
- Probability within one sigma of the mean is about ³/₃ (68.3%)
- 95% confidence intervals are traditionally used: correspond to about 1.96σ

	In	Out	Chance out
±1σ	68.3%	31.7%	1 in 3
±2σ	95.4%	4.6%	1 in 20
±3σ	99.7%	0.3%	1 in 400
±4σ	99.994%	0.006%	1 in 16,000
±5σ	99.99993%	0.00007%	1 in 1,700,000
±1.96σ	95.0%	5.0%	1 in 20



 $\begin{array}{l} \mu = 10 \\ \sigma = 1.5 \end{array}$

Example: normal distribution



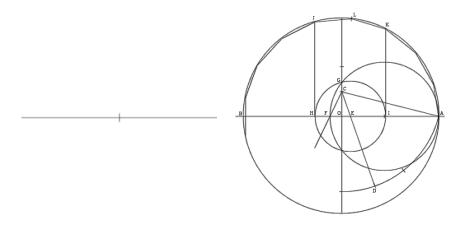
Height of 1034 US Major League baseball players

- mean = 187.2 cm
- standard deviation = 5.9 cm
- standard error = 0.2 cm

Source: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights

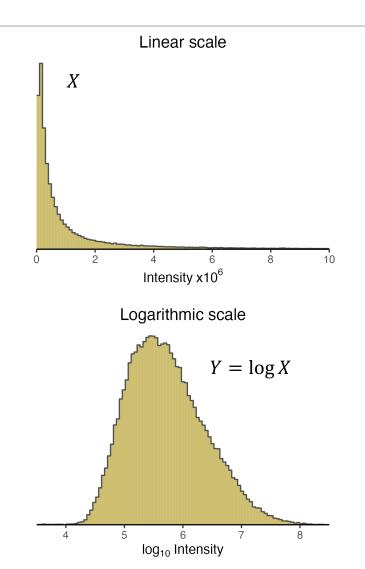
Carl Friedrich Gauss (1777-1855)

- Brilliant German mathematician
- Constructed a regular heptadecagon with a ruler and a compass
- He requested that a regular heptadecagon should be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated "Gaussian" distribution



Log-normal distribution

- Probability distribution of a random variable whose logarithm is normally distributed
- Log-normal distribution can be very asymmetric!



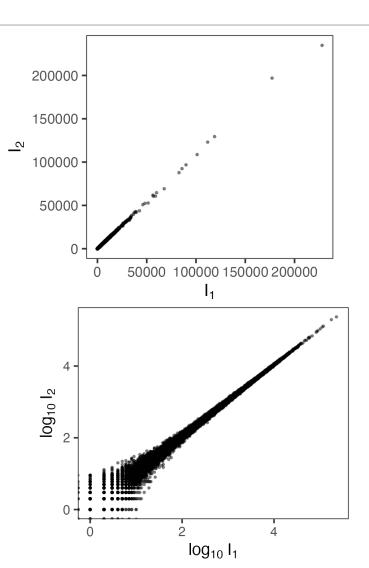
Example: log-normal distribution

- Peptide intensities from a mass spectrometry experiment
- P_{SD} fraction of data within $M \pm SD$
- Data look better in logarithmic space
- Always plot the distribution of your data before analysis
- About two-thirds of data points are within one standard deviation from the mean **only** when their distribution is approximately Gaussian



A few notes on log-normal distribution

- Examples of log-normal distributions
 gene expression (RNA-seq, microarrays)
 mass spectrometry data
 drug potency *IC*₅₀
 Plot these data in logarithmic scale!
 - It doesn't matter if you use log₂, log₁₀ or ln, as long as you are consistent
 - \log_{10} is easier to understand in plots □ $10^4 = 10,000$ □ $2^{10} = 1024$

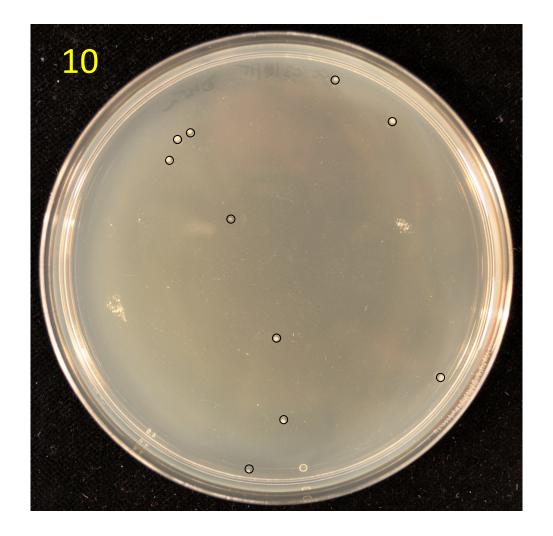


John Napier (1550-1617)

- Scottish mathematician and astronomer
- Invented logarithms and published first tables of natural logarithms
- Created "Napier's bones", the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy

Merchiston Castle, Edinburgh

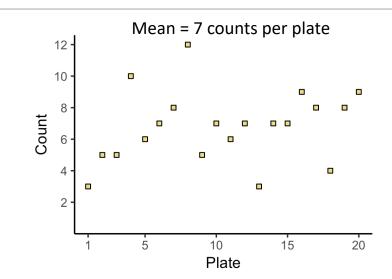
Counting bacterial colonies



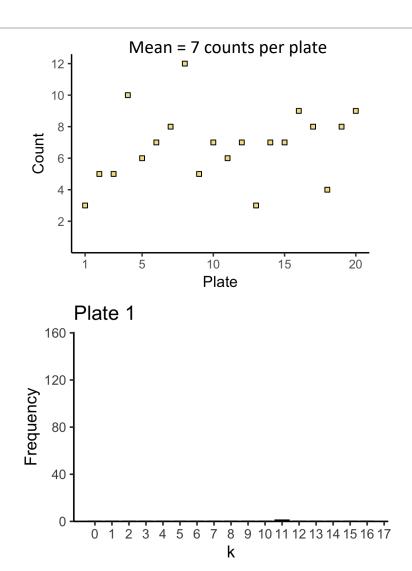
Courtesy of Katharina Trunk

100 μl of 10⁻⁷ dilution of OD₆₀₀ = 2.0

Measure of bacterial count per unit volume



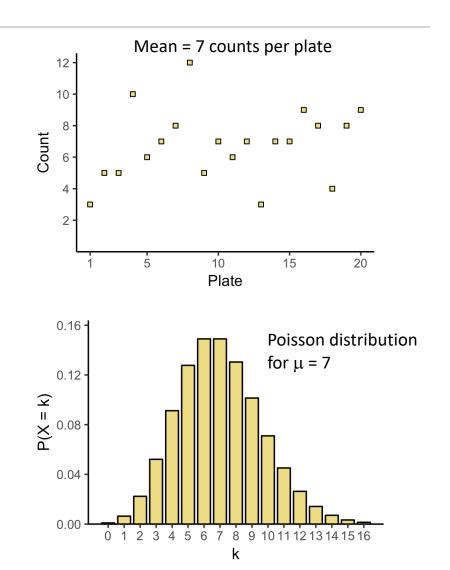
- Measure of bacterial count per unit volume
- Repeat over multiple plates



Measure of bacterial count per unit volume

Poisson count: always per "bin"

- This applies to any counts in time or space
 - $\hfill\square$ radioactive decays per second
 - $\hfill\square$ number of deaths in a population
 - $\hfill\square$ number of cells in a counting chamber
 - $\hfill\square$ number of mutations in a DNA fragment



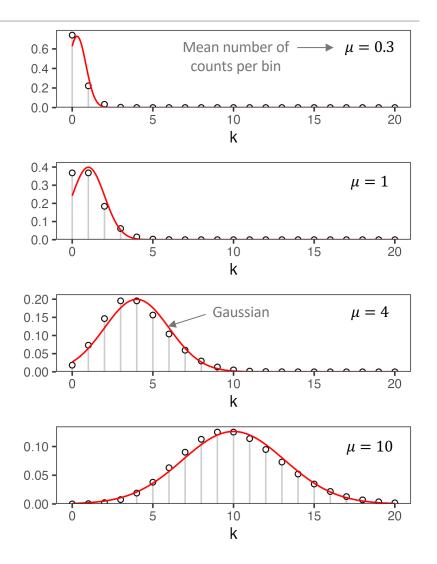
- Random and independent events
- Probability of observing exactly k events:

 $P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$

- One parameter: mean count rate, μ
- Standard deviation:

 $\sigma = \sqrt{\mu}$ $\sigma^2 = \mu$

 For large µ Poisson distribution approximates Gaussian



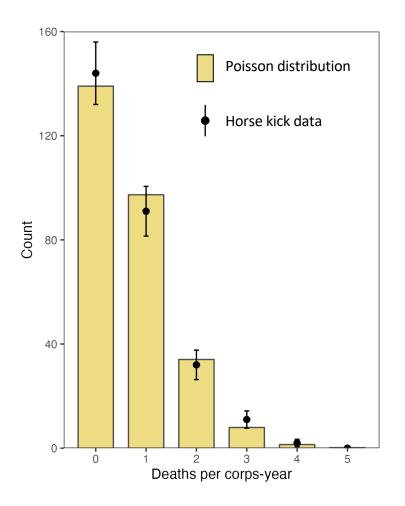
Classic example: horse kicks

- Ladislaus von Bortkiewicz (1898) "Das Gesetz der kleinen Zahlen"
- Number of soldiers in the Prussian army killed by horse kicks
 - 14 army corps, 20 years of data
 - $\hfill\square$ Deaths per year per army corps

	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
G		2	2	1			1	1		3		2	1			1		1		
I	-	_		$\hat{2}$		3		2			-	1	1	1		2		3	1	
л				2		2			1	1			2	1	1		·	2	_	
Ш	-			1	1	1	2	-	2				1		1	2	1			-
IV		1		1	1	1	1	-				1					1	1		
v					2	1		-	1			1		J	í	1	1	1	1	
VI			1		2			1	2		1	1	3	1	1	1		3		
711	1		1				1		1	1			2			2	1		2	
111	1				1			1				-	1			-	1	1		1
IX X	-	—				2	1	1	1		2	1	1		1	2		1		
			1	1		1		2		2					2	1	3		1	4

Example: Poisson distribution

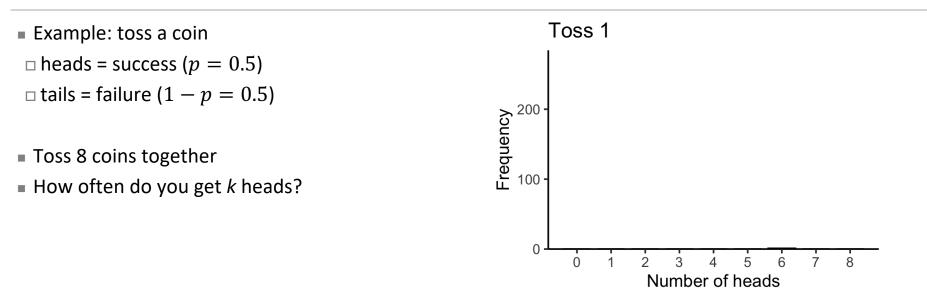
- Death distribution follows Poisson law
- mean = 0.70 deaths / corps / year
- 4 deaths in a corps-year are expected to happen from time to time!
- P(X = 4) = 0.078 in 14 corps
- On average it should happen once in 13 years



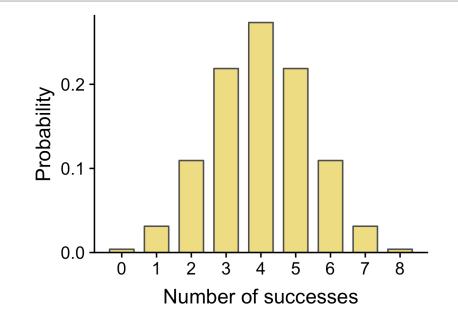
Example: toss a coin

 \Box heads = success (p = 0.5)

- \Box tails = failure (1 p = 0.5)
- Toss 8 coins together
- How often do you get 4 heads?



- A series of n trials
- In each trial, the probability of:
 - $\Box \ success = p$ $\Box \ failure = 1 p$
- What is the probability of having exactly k successes in n trials?

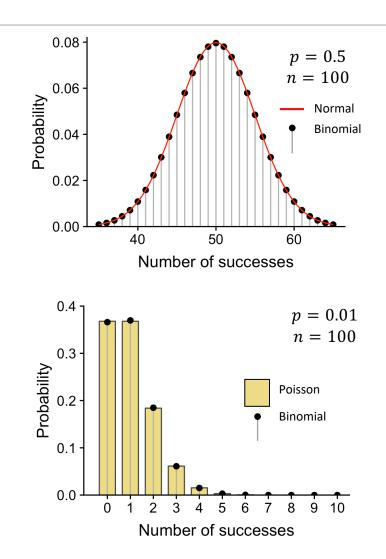


- Applications:
 - □ random errors
 - □ error of the proportion
 - \square error of the median

Mean and standard deviation

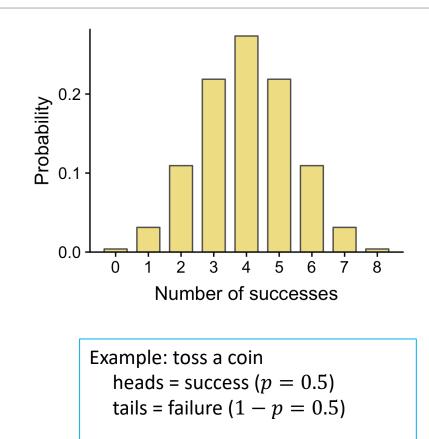
 $\mu = np$ $\sigma = \sqrt{np(1-p)}$

- For large n can be approximated by normal distribution
- For large n and small p it becomes
 Poisson



Example: tossing a coin

- Toss 8 coins
- Question: why is the probability having heads 4 times much larger than the probability of heads 8 times?

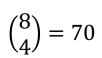


What is the probability of obtaining heads k times from 8 coins?

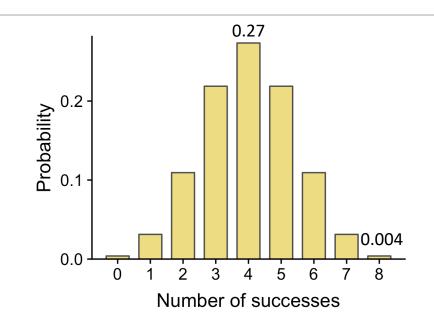
Example: tossing a coin

There is only one way of having heads 8 times

 There many are ways of getting 4 heads and 4 tails

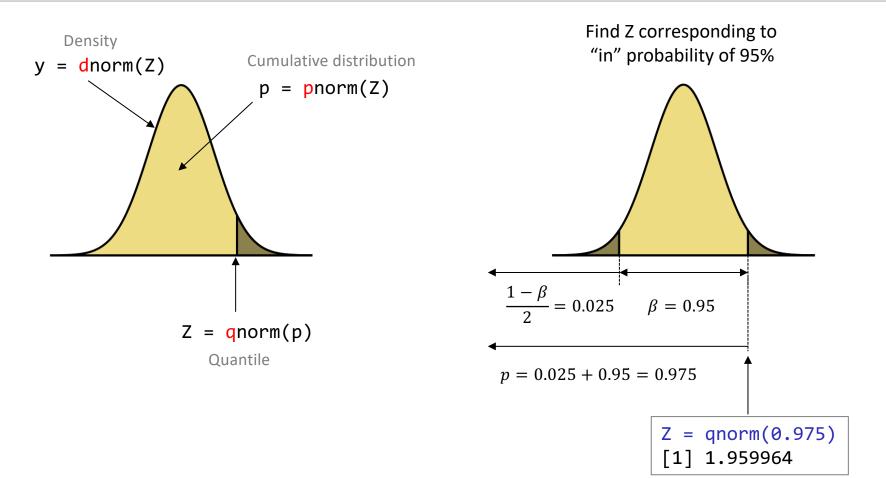


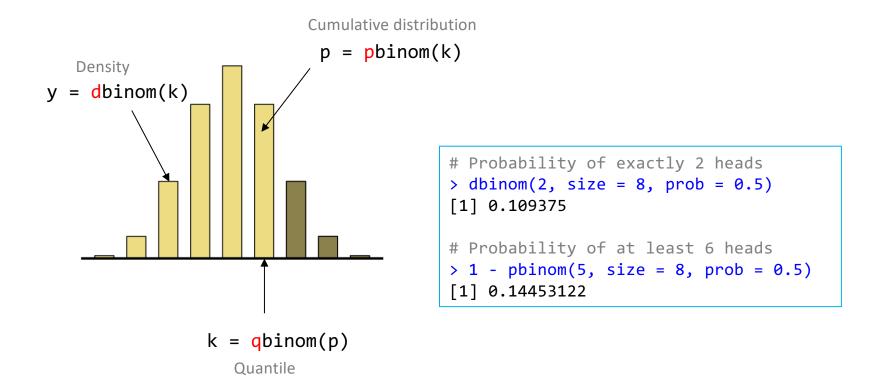
...



Example: toss a coin heads = success (p = 0.5) tails = failure (1 - p = 0.5)

What is the probability of obtaining heads k times from 8 coins?





Distribution	Density	Cumulative	Quantiles
Normal	dnorm	pnorm	qnorm
Poisson	dpois	ppois	qpois
Binomial	dbinom	pbinom	qbinom
Log-normal	dlnorm	plnorm	qlnorm
Uniform	dunif	punif	qunif
Student t	dt	pt	qt
Chi-square	dchisq	pchisq	qchisq
Hypergeometric	dhyper	phyper	qhyper
F	df	pf	qf

Distribution	Description	Examples
Normal	Bell-shaped	Often seen in nature, e.g. human height
Log-normal	Logarithm of this is normal	High-throughput experiments
Poisson	Count distribution	Counts of cells per plate
Binomial	Success vs failure	Male/female distribution

Slides available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html