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6. Introduction to p-values

Null hypothesis, statistical test, p-value
Fisher’s test

7. Contingency tables

Chi-square test
G-test

8. T-test

One- and two-sample, paired
One-sample variance test

9. ANOVA

One-way
Two-way

10. Non-parametric methods

Mann-Whitney, Wilcoxon signed-rank
Kruskal-Wallis, Kolmogorov-Smirnov

11. Statistical power

Effect size
Power in t-test
Power in ANOVA

12. Multiple test corrections

False discovery rate
Benjamini-Hochberg limit

14. What’s wrong with p-values?

A lot

1. Probability distributions

Random variables
Normal, log-normal, Poisson, Binomial

2. Errors and statistical estimators

Measurement and random errors
Population and sample
Standard deviation, standard error

3. Confidence intervals 1

Sampling distribution
Confidence interval of the mean, median

4. Confidence intervals 2

Confidence interval of count data, correlation, 
proportion

5. Data presentation

How to make a good plot

13. Linear models

Regression, design matrix, dummy variables, 
models with multiple variables



1. Probability distributions

“Misunderstanding of probability may be the greatest 
of all general impediments to scientific literacy”

Stephen Jay Gould



Example

n Experiment: estimate bacterial 
concentration using a spectrophotometer

n 6 replicates
n Find the following OD600

0.37  0.34  0.41  0.40  0.30  0.33

n Experimental result is a random variable
n It follows a certain probability distribution



Random variable: random numbers



Discrete and continuous random variables

n Discrete variables:
o sum of 2 dice (2, 3, 4, …, 12)
o categorical outcome (small, medium, large)
o number of mice (in a survival experiment)

n Continuous variables:
o weight of a mouse
o height of a person
o fluorescent marker luminosity
o protein abundance



Probability distribution (2 dice)
n Assigns a probability to each of the possible outcomes
n Throwing 2 dice

Outcome Combinations

2 1+1

3 1+2, 2+1

4 1+3, 2+2, 3+1

5 1+4, 2+3, 3+2, 4+1

6 1+5, 2+4, 3+3, 4+2, 5+1

7 1+6, 2+5, 3+4, 4+3, 5+2, 6+1

8 2+6, 3+5, 4+4, 5+3, 6+2

9 3+6, 4+5, 5+4, 6+3

10 4+6, 5+5, 6+4

11 5+6, 6+5

12 6+6

There are 36 combinations possible



0.16

0.10

0.06

Discrete random variable

𝑃(𝑋 = 𝑘)

random
variable outcome

probability
𝑃 𝑋 = 6 = 0.10

𝑃 5 ≤ 𝑋 ≤ 7 = 0.32



Continuous random variable

𝑃 𝑋 > 𝑥! = )
"!

#

𝑓 𝑥 𝑑𝑥

density
function

random
variable

limit area under
the curve

𝑃 𝑋 = 10 = 0

𝑃 𝑋 > 10 = 0.08

𝑥"

probability
density
function

probability



Normal distribution
(Gaussian)



Normal distribution

n Normal (or Gaussian) probability distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒#

$#% !

&'!

o 𝜇 - mean
o 𝜎 - standard deviation

n 𝜎& is called variance
n It is called “normal” as it often appears in 

nature

𝜇
𝜇 + 𝜎𝜇 − 𝜎

𝜇 = 10
𝜎 = 1.5



Normal distribution: a few numbers

n Area under the curve = probability

n Probability within one sigma of the 
mean is about ⅔ (68.3%)

n 95% confidence intervals are 
traditionally used: correspond to about 
1.96𝜎

In Out Chance out
±1s 68.3% 31.7% 1 in 3
±2s 95.4% 4.6% 1 in 20
±3s 99.7% 0.3% 1 in 400
±4s 99.994% 0.006% 1 in 16,000
±5s 99.99993% 0.00007% 1 in 1,700,000
±1.96s 95.0% 5.0% 1 in 20

68.3%

95.4%

99.7%

𝜇 = 10
𝜎 = 1.5



Example: normal distribution

Height of 1034 US Major League 
baseball players

• mean = 187.2 cm
• standard deviation = 5.9 cm
• standard error = 0.2 cm

Source: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights



Carl Friedrich Gauss (1777-1855)

n Brilliant German mathematician
n Constructed a regular heptadecagon with a ruler 

and a compass
n He requested that a regular heptadecagon 

should be inscribed on his tombstone
n However, it was Abraham de Moivre (1667-

1754) who first formulated “Gaussian” 
distribution



Log-normal distribution
n Probability distribution of a random variable 

whose logarithm is normally distributed

n Log-normal distribution can be very 
asymmetric!

𝑋

𝑌 = log𝑋



Example: log-normal distribution
n Peptide intensities from a mass spectrometry 

experiment

n 𝑃() - fraction of data within 𝑀 ± 𝑆𝐷

n Data look better in logarithmic space
n Always plot the distribution of your data before 

analysis

n About two-thirds of data points are within one 
standard deviation from the mean only when 
their distribution is approximately Gaussian

𝑀 = 2.1×10!
𝑆𝐷 = 7.4×10!
𝑃"# = 0.96

𝑀$%& = 5.7
𝑆𝐷$%& = 0.7
𝑃"# = 0.67

𝑀 𝑀+𝑆𝐷

𝑀 𝑀+ 𝑆𝐷𝑀− 𝑆𝐷



A few notes on log-normal distribution

n Examples of log-normal distributions
o gene expression (RNA-seq, microarrays)
o mass spectrometry data
o drug potency 𝐼𝐶50

n Plot these data in logarithmic scale!

n It doesn’t matter if you use log2, log10 or ln, as 
long as you are consistent

n log10 is easier to understand in plots
o 10/ = 10,000
o 201 = 1024



John Napier (1550-1617)
n Scottish mathematician and astronomer
n Invented logarithms and published first tables 

of natural logarithms
n Created “Napier’s bones”, the first practical 

calculator
n Had an interest in theology, calculated the date 

of the end of the world between 1688 and 1700

Merchiston Castle, Edinburgh
n Apparently involved in alchemy and 

necromancy



Poisson distribution



Counting bacterial colonies

Courtesy of Katharina Trunk

100 µl of 10-7 dilution of OD600 = 2.0
10



Poisson distribution
n Measure of bacterial count per unit volume Mean = 7 counts per plate



Poisson distribution
n Measure of bacterial count per unit volume

n Repeat over multiple plates

Mean = 7 counts per plate



Poisson distribution
n Measure of bacterial count per unit volume

n Poisson count: always per “bin”

n This applies to any counts in time or space
o radioactive decays per second
o number of deaths in a population
o number of cells in a counting chamber
o number of mutations in a DNA fragment Poisson distribution

for µ = 7 

Mean = 7 counts per plate



Poisson distribution
n Random and independent events
n Probability of observing exactly 𝑘 events:

𝑃 𝑋 = 𝑘 =
𝜇2𝑒#%

𝑘!

n One parameter: mean count rate, 𝜇
n Standard deviation:

𝜎 = 𝜇

𝜎& = 𝜇

n For large 𝜇 Poisson distribution 
approximates Gaussian

Mean number of
counts per bin

Gaussian

𝜇 = 0.3

𝜇 = 1

𝜇 = 4

𝜇 = 10



Classic example: horse kicks

n Ladislaus von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”
n Number of soldiers in the Prussian army killed by horse kicks

o 14 army corps, 20 years of data
o Deaths per year per army corps



Example: Poisson distribution

n Death distribution follows Poisson law
n mean = 0.70 deaths / corps / year

n 4 deaths in a corps-year are expected to 
happen from time to time!

n 𝑃(𝑋 = 4) = 0.078 in 14 corps

n On average it should happen once in 13 years

Poisson distribution

Horse kick data



Binomial distribution



Binomial distribution
n Example: toss a coin
o heads = success (𝑝 = 0.5)
o tails = failure (1 − 𝑝 = 0.5)

n Toss 8 coins together
n How often do you get 4 heads?



Binomial distribution
n Example: toss a coin
o heads = success (𝑝 = 0.5)
o tails = failure (1 − 𝑝 = 0.5)

n Toss 8 coins together
n How often do you get k heads?



Binomial distribution
n A series of 𝑛 trials
n In each trial, the probability of:

o success = 𝑝
o failure = 1 − 𝑝

n What is the probability of having exactly 𝑘
successes in 𝑛 trials?

n Applications:
o random errors
o error of the proportion
o error of the median



Binomial distribution
n Mean and standard deviation

𝜇 = 𝑛𝑝

𝜎 = 𝑛𝑝(1 − 𝑝)

n For large 𝑛 can be approximated by 
normal distribution

n For large 𝑛 and small 𝑝 it becomes 
Poisson

𝑝 = 0.5
𝑛 = 100

𝑝 = 0.01
𝑛 = 100

Poisson

Binomial

Normal
Binomial



Example: tossing a coin
n Toss 8 coins
n Question: why is the probability having heads 4 

times much larger than the probability of heads 
8 times?

Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin

n There is only one way of having heads 8 
times

n There many are ways of getting 4 heads 
and 4 tails

…

0.27

0.004

8
4 = 70

Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Probability distributions in R



Probability distributions in R

p = pnorm(Z)

Z = qnorm(p)

1 − 𝛽
2

= 0.025

𝑝 = 0.025 + 0.95 = 0.975

Cumulative distribution

Quantile

Find Z corresponding to
“in” probability of 95%

𝛽 = 0.95

Z = qnorm(0.975)
[1] 1.959964

y = dnorm(Z)
Density



Probability distributions in R

p = pbinom(k)

k = qbinom(p)

Cumulative distribution

Quantile

y = dbinom(k)
Density

# Probability of exactly 2 heads
> dbinom(2, size = 8, prob = 0.5)
[1] 0.109375

# Probability of at least 6 heads
> 1 - pbinom(5, size = 8, prob = 0.5)
[1] 0.14453122



Probability distributions in R

Distribution Density Cumulative Quantiles

Normal dnorm pnorm qnorm

Poisson dpois ppois qpois

Binomial dbinom pbinom qbinom

Log-normal dlnorm plnorm qlnorm

Uniform dunif punif qunif

Student t dt pt qt

Chi-square dchisq pchisq qchisq

Hypergeometric dhyper phyper qhyper

F df pf qf



Summary

Distribution Description Examples
Normal Bell-shaped Often seen in nature, e.g. human 

height

Log-normal Logarithm of this is normal High-throughput experiments

Poisson Count distribution Counts of cells per plate

Binomial Success vs failure Male/female distribution
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