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Why do we need statistics?
n Consider an RNA-seq experiment
n Comparing wild type and knock-out
n Expression level of gene IGD1

o WT = 648
o △Snf2 = 1299

n There is a 2-fold change in intensity
n Great! Gene is upregulated!



Why do we need statistics?
n Consider an RNA-seq experiment
n Comparing wild type and knock-out
n Expression level of gene IGD1

o WT = 648
o △Snf2 = 1299

n There is a 2-fold change in intensity
n Great! Gene is upregulated!
n Repeat the experiment in 42/44 replicates

o WT = 975 ± 84
o △Snf2 = 1035 ± 54

n Reveal variability of expression

n No difference between WT and knock-out

𝑝 = 0.2



Marek Gierliński James Abbott

We collaborate on various types of 
projects

Anything involving data analysis

http://www.compbio.dundee.ac.uk/dag.html



Course materials
n Lecture slides available (one day before each lecture) at 

https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html
n “Understanding statistical error: a primer for biologists”, Wiley 
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6. Introduction to p-values

Null hypothesis, statistical test, p-value
Fisher’s test

7. Contingency tables

Chi-square test
G-test

8. T-test

One- and two-sample, paired
One-sample variance test

9. ANOVA

One-way
Two-way

10. Non-parametric methods

Mann-Whitney
Wilcoxon signed-rank
Kruskal-Wallis
Kolmogorov-Smirnov

11. Statistical power

Effect size
Power in t-test
Power in ANOVA

12. Multiple test corrections

Family-wise error rate
False discovery rate
Holm-Bonferroni limit
Benjamini-Hochberg limit

13. What’s wrong with p-values?

A lot

1. Probability distributions

Random variables
Normal, log-normal, Poisson, Binomial

2. Errors and statistical estimators

Measurement and random errors
Population and sample
Standard deviation, standard error

3. Confidence intervals 1

Sampling distribution
Confidence interval of the mean, median

4. Confidence intervals 2

Confidence interval of count data, 
correlation, proportion

5. Data presentation

How to make a good plot



1. Probability distributions

“Misunderstanding of probability may be the greatest 
of all general impediments to scientific literacy”

Stephen Jay Gould



Example
n Experiment: estimate bacterial concentration 

using a spectrophotometer

n 6 replicates
n Find the following OD600

0.37  0.34  0.41  0.40  0.30  0.33

n Experimental result is a random variable
n It follows a certain probability distribution
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Random variable: random numbers
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Discrete and continuous random variables
n Discrete variables:

o sum of 2 dice (2, 3, 4, …, 12)
o categorical outcome
o number of mice (5, non random?)
o number of mice in survival experiment 

(random)

n Continuous variables:
o weight of a mouse
o height of a person
o fluorescent marker luminosity
o protein abundance
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Probability distribution (2 dice)
n Assigns a probability to each of the 

possible outcomes
n Throwing 2 dice

Outcome Combinations

2 1+1

3 1+2, 2+1

4 1+3, 2+2, 3+1

5 1+4, 2+3, 3+2, 4+1

6 1+5, 2+4, 3+3, 4+2, 5+1

7 1+6, 2+5, 3+4, 4+3, 5+2, 6+1

8 2+6, 3+5, 4+4, 5+3, 6+2

9 3+6, 4+5, 5+4, 6+3

10 4+6, 5+5, 6+4

11 5+6, 6+5

12 6+6

There are 36 combinations possible



0.16

0.10

0.06

Discrete random variable
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𝑃(𝑋 = 𝑘)

random
variable outcome

probability
𝑃 𝑋 = 6 = 0.10

𝑃 5 ≤ 𝑋 ≤ 7 = 0.32



Continuous random variable
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𝑃 𝑋 > 𝑥8 = 9
:;

<

𝑓 𝑥 𝑑𝑥

density
function

random
variable

limit area under
the curve

𝑃 𝑋 = 10 = 0

𝑃 𝑋 > 10 = 0.08

𝑥8

probability
density
function

probability



Normal distribution
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Normal distribution
n Normal (or Gaussian) probability distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒B

:BC D

EFD

o 𝜇 - mean
o 𝜎 - standard deviation
o 𝜎E - variance

n It is called “normal” as it often appears in 
nature

𝜇
𝜇 + 𝜎𝜇 − 𝜎

𝜇 = 10
𝜎 = 1.5



17

Normal distribution: a few numbers
n Area under the curve = probability

n Probability within one sigma of the mean 
is about ⅔ (68.3%)

n 95% confidence intervals are traditionally 
used: correspond to about 1.96𝜎

In Out Odds of out

±1s 68.3% 31.7% 1:3

±2s 95.4% 4.6% 1:20

±3s 99.7% 0.3% 1:400

±4s 99.994% 0.006% 1:16,000
±5s 99.99993% 0.00007% 1:1,700,000
±1.96s 95.0% 5.0% 1:20

68.3%

95.4%

99.7%

𝜇 = 10
𝜎 = 1.5
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Example: normal distribution

Height of 1034 Major League baseball 
players

• mean = 187.2 cm
• standard deviation = 5.9 cm
• standard error = 0.2 cm

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights
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Carl Friedrich Gauss (1777-1855)
n Brilliant German mathematician
n Constructed a regular heptadecagon with a 

ruler and a compass
n He requested that a regular heptadecagon

should be inscribed on his tombstone
n However, it was Abraham de Moivre (1667-

1754) who first formulated “Gaussian” 
distribution
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Log-normal distribution
n Probability distribution of a random 

variable whose logarithm is normally 
distributed

n Log-normal distribution can be very 
asymmetric!

𝑋

𝑌 = log𝑋
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Example: log-normal distribution
n Peptide intensities from a mass 

spectrometry experiment

n 𝑃NO - fraction of data within 𝑀 ± 𝑆𝐷

n Data look better in logarithmic space
n Always plot the distribution of your data 

before analysis

n About two-thirds of data points are within 
one standard deviation from the mean 
only when their distribution is 
approximately Gaussian

𝑀 = 2.1×10T
𝑆𝐷 = 7.4×10T
𝑃NO = 0.96

𝑀UVW = 5.7
𝑆𝐷UVW = 0.7
𝑃NO = 0.67

𝑀 𝑀 + 𝑆𝐷

𝑀 𝑀 + 𝑆𝐷𝑀 − 𝑆𝐷
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A few notes on log-normal distribution
n Examples of log-normal distributions

o gene expression (RNA-seq, 
microarrays)

o mass spectrometry data
o drug potency 𝐼𝐶50

n Plot these data in logarithmic scale!

n It doesn’t matter if you use log2, log10
or ln, as long as you are consistent

n log10 is easier to understand in plots
o 10[ = 100,000
o 2]^ = 1024



John Napier (1550-1617)
n Scottish mathematician and astronomer
n Invented logarithms and published first 

tables of natural logarithms
n Created “Napier’s bones”, the first 

practical calculator
n Had an interest in theology, calculated the 

date of the end of the world between 
1688 and 1700
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Merchiston Castle, Edinburgh
n Apparently involved in alchemy and 

necromancy



Poisson distribution



Counting bacterial colonies
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10
Courtesy of Katharina Trunk

100 µl of 10-7 dilution of OD600 = 2.0



Poisson distribution
n Measure of bacterial count per unit 

volume

n Poisson count: always per bin

n This applies to any counts in time or space
o radioactive decays per second
o number of deaths in a population
o number of cells in a counting chamber
o number of mutations in a DNA fragment
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Mean = 7 counts per plate

Poisson distribution
for µ = 7 



Poisson distribution
n Random and independent events
n Probability of observing exactly 𝑘 events:

𝑃 𝑋 = 𝑘 =
𝜇_𝑒BC

𝑘!

n One parameter: mean count rate, 𝜇
n Standard deviation:

𝜎 = 𝜇

𝜎E = 𝜇

n For large 𝜇 Poisson distribution approximates 
Gaussian

n Example, 𝜇 = 4:

𝑃 𝑋 = 2 =
4E𝑒Bb

2!
=
16×0.0183

2
= 0.147
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Mean number of
counts per bin

Gaussian

𝜇 = 0.3

𝜇 = 1

𝜇 = 4

𝜇 = 10
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Classic example: horse kicks
n Ladislaus von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”
n Number of soldiers in the Prussian army killed by horse kicks

o 14 army corps, 20 years of data
o Deaths per year per army corps
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Example: Poisson distribution

n Death distribution follows Poisson law
n mean = 0.70 deaths / corps / year

n 4 deaths in a corps-year are expected to 
happen from time to time!

n 𝑃(𝑋 = 4) = 0.078 in 14 corps
n On average it should happen once in 13 

years

Poisson distribution

Horse kick data



Binomial distribution



Binomial distribution
n A series of 𝑛 “trials”
n In each trial, the probability of:

o “success”  = 𝑝
o “failure” = 1 − 𝑝

n What is the probability of having exactly 𝑘
successes in 𝑛 trials?

n Applications:
o random errors
o error of the proportion
o error of the median
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

Probability of getting 𝑘 heads from 
8 coins



Binomial distribution
n Mean and standard deviation

𝜇 = 𝑛𝑝

𝜎 = 𝑛𝑝(1 − 𝑝)

n For large 𝑛 can be approximated by normal 
distribution

n For large 𝑛 and small 𝑝 it becomes Poisson
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𝑝 = 0.5
𝑛 = 100

𝑝 = 0.01
𝑛 = 100

Poisson

Binomial

Normal
Binomial



Example: tossing a coin
n Toss 8 coins
n Question: why is the probability having 

heads 4 times much larger than the 
probability of heads 8 times?
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin
n There is only one way of having heads 8 

times

n There many are ways of getting 4 heads and 
4 tails
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?

…

0.27

0.004

8
4 = 70



Probability distributions in R



Probability distributions in R
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p = pnorm(Z)

Z = qnorm(p)

1 − 𝛽
2 = 0.025

𝑝 =
1 − 𝛽
2

+ 𝛽 =
1 + 𝛽
2

= 0.975

Cumulative distribution

Quantile

Find Z corresponding to
CI = 95%

𝛽 = 0.95

Z = qnorm(0.975)
[1] 1.959964

y = dnorm(Z)
Density



Probability distributions in R
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p = pbinom(k)

k = qbinom(p)

Cumulative distribution

Quantile

y = dbinom(k)
Density

# Probability of exactly 2 heads
> dbinom(2, size=8, prob=0.5)
[1] 0.109375

# Probability of at least 6 heads
> 1 - pbinom(5, size=8, prob=0.5)
[1] 0.14453122



Probability distributions in R
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Distribution Density Cumulative Quantiles

Normal dnorm pnorm qnorm

Poisson dpois ppois qpois

Binomial dbinom pbinom qbinom

Log-normal dlnorm plnorm qlnorm

Uniform dunif punif qunif

Student t dt pt qt

Chi-square dchisq pchisq qchisq

Hypergeometric dhyper phyper qhyper

F df pf qf



Summary
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Distribution Description Examples

Normal Bell-shaped Often seen in nature, e.g. human 
height

Log-normal Logarithm of this is normal High-throughput experiments

Poisson Count distribution Counts of cells per plate

Binomial Success vs failure Male/female distribution



Hand-outs available at 
https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html


