Everything you always wanted to know about statistics*

Marek Gierliński Division of Computational Biology

Hand-outs available at

https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html

*but were afraid to ask

Why do we need statistics?

- Consider an RNA-seq experiment
- Comparing wild type and knock-out
- Expression level of gene IGD1
 - □ WT = 648
 - □ △Snf2 = 1299
- There is a 2-fold change in intensity
- Great! Gene is upregulated!

Why do we need statistics?

- Consider an RNA-seq experiment
- Comparing wild type and knock-out
- Expression level of gene IGD1
 □ WT = 648
 □ △Snf2 = 1299
- There is a 2-fold change in intensity
- Great! Gene is upregulated!
- Repeat the experiment in 42/44 replicates
 □ WT = 975 ± 84
 □ △Snf2 = 1035 ± 54
- Reveal variability of expression
- No difference between WT and knock-out

We collaborate on various types of projects

Anything involving data analysis

Marek Gierliński

James Abbott

http://www.compbio.dundee.ac.uk/dag.html

Course materials

- Lecture slides available (one day before each lecture) at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html
- "Understanding statistical error: a primer for biologists", Wiley

1. Probability distributions

Random variables Normal, log-normal, Poisson, Binomial

2. Errors and statistical estimators

Measurement and random errors Population and sample Standard deviation, standard error

3. Confidence intervals 1

Sampling distribution Confidence interval of the mean, median

4. Confidence intervals 2

Confidence interval of count data, correlation, proportion

5. Data presentation

How to make a good plot

6. Introduction to p-values

Null hypothesis, statistical test, p-value Fisher's test

7. Contingency tables

Chi-square test G-test

8. T-test

One- and two-sample, paired One-sample variance test

9. ANOVA

One-way

Two-way

10. Non-parametric methods

Mann-Whitney Wilcoxon signed-rank Kruskal-Wallis Kolmogorov-Smirnov

11. Statistical power

Effect size Power in t-test Power in ANOVA

12. Multiple test corrections

Family-wise error rate False discovery rate Holm-Bonferroni limit Benjamini-Hochberg limit

13. What's wrong with p-values?

A lot

1. Probability distributions

"Misunderstanding of probability may be the greatest of all general impediments to scientific literacy"

Stephen Jay Gould

Example

 Experiment: estimate bacterial concentration using a spectrophotometer

- 6 replicates
- Find the following OD600
 0.37 0.34 0.41 0.40 0.30 0.33

- Experimental result is a random variable
- It follows a certain probability distribution

Random variable: random numbers

Discrete and continuous random variables

- Discrete variables:
 - □ sum of 2 dice (2, 3, 4, ..., 12)
 - $\hfill\square$ categorical outcome
 - □ number of mice (5, non random?)
 - number of mice in survival experiment (random)

- □ weight of a mouse
- □ height of a person
- □ fluorescent marker luminosity
- $\hfill\square$ protein abundance

Probability distribution (2 dice)

- Assigns a probability to each of the possible outcomes
- Throwing 2 dice

Outcome	Combinations
2	1+1
3	1+2, 2+1
4	1+3, 2+2, 3+1
5	1+4, 2+3, 3+2, 4+1
6	1+5, 2+4, 3+3, 4+2, 5+1
7	1+6, 2+5, 3+4, 4+3, 5+2, 6+1
8	2+6, 3+5, 4+4, 5+3, 6+2
9	3+6, 4+5, 5+4, 6+3
10	4+6, 5+5, 6+4
11	5+6, 6+5
12	6+6

There are 36 combinations possible

Discrete random variable

Continuous random variable

Normal distribution

Normal distribution

Normal (or Gaussian) probability distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 \square μ - mean

 $\square \ \sigma$ - standard deviation

- $\square \sigma^2$ variance
- It is called "normal" as it often appears in nature

Normal distribution: a few numbers

- Area under the curve = probability
- Probability within one sigma of the mean is about ⅔ (68.3%)
- 95% confidence intervals are traditionally used: correspond to about 1.96σ

	In	Out	Odds of out
±1σ	68.3%	31.7%	1:3
±2σ	95.4%	4.6%	1:20
±3σ	99.7%	0.3%	1:400
±4σ	99.994%	0.006%	1:16,000
±5σ	99.99993%	0.00007%	1:1,700,000
±1.96σ	95.0%	5.0%	1:20

Example: normal distribution

Carl Friedrich Gauss (1777-1855)

- Brilliant German mathematician
- Constructed a regular heptadecagon with a ruler and a compass
- He requested that a regular heptadecagon should be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated "Gaussian" distribution

Log-normal distribution

- Probability distribution of a random variable whose logarithm is normally distributed
- Log-normal distribution can be very asymmetric!

Example: log-normal distribution

- Peptide intensities from a mass spectrometry experiment
- P_{SD} fraction of data within $M \pm SD$
- Data look better in logarithmic space
- Always plot the distribution of your data before analysis
- About two-thirds of data points are within one standard deviation from the mean only when their distribution is approximately Gaussian

A few notes on log-normal distribution

- Examples of log-normal distributions
 - gene expression (RNA-seq, microarrays)
 - mass spectrometry data
 - \Box drug potency IC_{50}
- Plot these data in logarithmic scale!

- It doesn't matter if you use log₂, log₁₀ or ln, as long as you are consistent
- \log_{10} is easier to understand in plots $\square 10^5 = 100,000$ $\square 2^{10} = 1024$

John Napier (1550-1617)

- Scottish mathematician and astronomer
- Invented logarithms and published first tables of natural logarithms
- Created "Napier's bones", the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy

Merchiston Castle, Edinburgh

Poisson distribution

Counting bacterial colonies

Courtesy of Katharina Trunk

100 μl of 10^-7 dilution of OD_{600} = 2.0

Poisson distribution

 Measure of bacterial count per unit volume

Poisson count: always per bin

This applies to any counts in time or space
 radioactive decays per second
 number of deaths in a population
 number of cells in a counting chamber
 number of mutations in a DNA fragment

Poisson distribution

- Random and independent events
- Probability of observing exactly k events:

$$P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$$

- One parameter: mean count rate, μ
- Standard deviation:

 $\sigma = \sqrt{\mu}$ $\sigma^2 = \mu$

- For large µ Poisson distribution approximates
 Gaussian
- Example, $\mu = 4$:

$$P(X = 2) = \frac{4^2 e^{-4}}{2!} = \frac{16 \times 0.0183}{2} = 0.147$$

Classic example: horse kicks

- Ladislaus von Bortkiewicz (1898) "Das Gesetz der kleinen Zahlen"
- Number of soldiers in the Prussian army killed by horse kicks
 - 14 army corps, 20 years of data
 - Deaths per year per army corps

In nachstehender Tabelle sind die Zahlen der durch Schlag eines Pferdes verunglückten Militärpersonen, nach Armeecorps ("G." bedeutet Gardecorps) und Kalenderjahren nachgewiesen.¹)

	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
G		2	2	1	-	- 3	1	1		3		2	1			1		1		1
JI JI				2		2			1	1			2	1	1			3 2		_
	_	1		1	1	1	1					1					1	1		
VI VI	-		1		2			1	1 2 1		1	1	3	j	1	1	1	1 3		
	1				1		 1	1	 1				1				1	1	2 —	1
X X	-	_	1	1		1		2		2		-			2	1	3	1	1	1
XIV	1	i	2	1	í Í	4 3		4		1		1 3	$\frac{1}{2}$	1	2 	1 2	3 1	1	3	1
λY			-			-		1		1	1]				2	2				

Example: Poisson distribution

Deaths per corps-year

Binomial distribution

Binomial distribution

- A series of n "trials"
- In each trial, the probability of:
 - \square "success" = p
 - \square "failure" = 1 p
- What is the probability of having exactly k successes in n trials?

- Applications:
 - □ random errors
 - $\hfill\square$ error of the proportion
 - $\hfill\square$ error of the median

Example: toss a coin heads = success (p = 0.5) tails = failure (1 - p = 0.5) Probability of getting k heads from 8 coins

Binomial distribution

Mean and standard deviation

 $\mu = np$

$$\sigma = \sqrt{np(1-p)}$$

- For large n can be approximated by normal distribution
- For large n and small p it becomes Poisson

Example: tossing a coin

- Toss 8 coins
- Question: why is the probability having heads 4 times much larger than the probability of heads 8 times?

Example: toss a coin heads = success (p = 0.5) tails = failure (1 - p = 0.5)

What is the probability of obtaining heads k times from 8 coins?

Example: tossing a coin

Distribution	Density	Cumulative	Quantiles
Normal	dnorm	pnorm	qnorm
Poisson	dpois	ppois	qpois
Binomial	dbinom	pbinom	qbinom
Log-normal	dlnorm	plnorm	qlnorm
Uniform	dunif	punif	qunif
Student t	dt	pt	qt
Chi-square	dchisq	pchisq	qchisq
Hypergeometric	dhyper	phyper	qhyper
F	df	pf	qf

Distribution	Description	Examples
Normal	Bell-shaped	Often seen in nature, e.g. human height
Log-normal	Logarithm of this is normal	High-throughput experiments
Poisson	Count distribution	Counts of cells per plate
Binomial	Success vs failure	Male/female distribution

Hand-outs available at https://dag.compbio.dundee.ac.uk/training/Statistics_lectures.html